• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magma-Crust Interaction at Subduction Zone Volcanoes

Jolis, Ester M. January 2013 (has links)
The focus of this work is magma-crust interaction processes and associated crustal volatile release in subduction zone volcanoes, drawing on rock, mineral, and gas geochemistry as well as experimental petrology. Understanding the multitude of differentiation processes that modify an original magma during ascent to the surface is vital to unravel the contributions of the various sources that contribute to the final magmas erupted at volcanoes. In particular, magma-crust interaction (MCI) processes have been investigated at a variety of scales, from a local scale in the Vesuvius, Merapi, and Kelut studies, to a regional scale, in the Java to Bali segment of the Sunda Arc.  The role of crustal influences is still not well constrained in subduction systems, particulary in terms of the compositional impact of direct magma crust interplay. To address this shortcoming, we studied marble and calc-silicate (skarn) xenoliths, and used high resolution short timescale experimental petrology at Vesuvius volcano. The marbles and calc-silicates help to identify different mechanisms of magma-carbonate and magma-xenolith interaction, and the subsequent effects of volatile release on potential eruptive behaviour, while sequential short-duration experiments simulate the actual processes of carbonate assimilation employing natural materials and controlled magmatic conditions. The experiments highlight the efficiency of carbonate assimilation and associated carbonate-derived CO2 liberated over short timescales. The findings at Merapi and Kelut demonstrate a complex magmatic plumbing system underneath these volcanoes with magma residing at different depths, spanning from the mantle-crust boundary to the upper crust. The erupted products and volcanic gas emissions enable us to shed light on MCI-processes and associated volatile release in these systems. The knowledge gained from studying individual volcanoes (e.g., Merapi and Kelut) is then tested on a regional scale and applied to the entire Java and Bali arc segment. An attempt is presented to distinguish the extent of source versus crustal influences and establish a quantitative model of late stage crustal influence in this arc segment. This thesis therefore hopes to contribute to our knowledge of magma genesis and magma-crust interaction (MCI) processes that likely operate in subduction zone systems worldwide.
2

Processes of Magma-crust Interaction : Insights from Geochemistry and Experimental Petrology

Deegan, Frances M January 2010 (has links)
This work focuses on crustal interaction in magmatic systems, drawing on experimental petrology and elemental and isotope geochemistry. Various magma-chamber processes such as magma-mixing, fractional crystallisation and magma-crust interaction are explored throughout the papers comprising the thesis. Emphasis is placed on gaining insights into the extent of crustal contamination in ocean island magmas from the Canary Islands and the processes of magma-crust interaction observed both in nature and in experiments. This research underscores that the compositions of ocean island magmas, even primitive types which are classically used as probes of the mantle, are susceptible to modification by crustal contamination. The principal mechanisms of contamination identified from work on both Tenerife and Gran Canaria (Canary Islands) are assimilation and partial melting of the pre-existing island edifice and intercalated sediments by newly arriving magma (i.e. “island recycling”). The information that we can gain from studying solidified magma and entrained crustal xenoliths concerning the rates and mechanisms of crustal assimilation is, however, limited. To address this shortcoming, a series of time-variable crustal carbonate assimilation experiments were carried out at magmatic pressure and temperature using natural materials from Merapi volcano, Indonesia. A temporally constrained reaction series of carbonate assimilation in magma has hence been constructed. The experiments were analysed using in-situ techniques to observe the progressive textural, elemental, and isotopic evolution of magma-carbonate interaction. Crucially, carbonate assimilation was found to liberate voluminous crustally-derived CO2 on a timescale of only seconds to minutes in the experiments. This points to the role of rapid crustal degassing in volcanic volatile budgets, and, pertinently, in magnifying hazardous volcanic behaviour. This thesis, therefore, delivers detailed insights into the processes of magma-crust interaction from experiments and geochemistry. The outcomes confirm that crustal processes are significant factors in both, i) ocean island magma genesis, and ii) magma differentiation towards compositions with greater explosive potential which can, in turn, manifest as hazardous volcanism. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 707

Page generated in 0.3673 seconds