• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconsidering the pre-industrial mercury cycle using lake sediment archives

Cooke, Colin Alexander. January 2010 (has links)
Thesis (Ph.D.)--University of Alberta, 2010. / Title from PDF file main screen (viewed on July 13, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, [Department of] Earth and Atmospheric Sciences, University of Alberta. Includes bibliographical references.
2

The role of vegetation and soil in the biogeochemical cycling of mercury

Stamenkovic, Jelena. January 2008 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2008. / "December 2008." Includes bibliographical references. Online version available on the World Wide Web.
3

Microbial colonization and dissolution of mercury sulfide minerals

Vazquez Rodriguez, Adiari Iraida 01 January 2016 (has links)
Mercury (Hg) is a toxic heavy metal that poses significant human and environmental health risks. Mineral-associated Hg is the largest reservoir of Hg in the environment where it can account for nearly 60% of the global Hg mass inventory. A large fraction of this pool is comprised of mercury sulfide (HgS) minerals, including metacinnabar (beta-HgS). HgS minerals have long been considered insignificant sources of Hg to aqueous or atmospheric pools in all but severely acidic environments due to their low solubility and slow abiotic dissolution kinetics. Little previous work has been conducted investigating the bacterial colonization of HgS minerals and the potential role of these mineral-associated communities in impacting the mobility of mineral-hosted Hg. To address this gap in knowledge, the studies within this dissertation employed a combination of field- and laboratory-based methods. Using culture-independent techniques, this work revealed that sulfur-oxidizing bacteria can extensively colonize metacinnabar within aerobic, near neutral pH, creek sediments, suggesting a potential role for chemolithotrophic bacteria in metacinnabar weathering. Within laboratory incubations, the dominant bacterial colonizer (Thiobacillus thioparus), induced extensive release and volatilization of metacinnabar-hosted Hg. These findings expose a new pathway for metacinnabar dissolution and point to mineral-hosted Hg as an underappreciated source of elemental Hg that may contribute to global atmospheric Hg budgets. In addition, this work elucidates the importance of thiosulfate, a major intermediate sulfur species in the environment, in stimulating metacinnabar dissolution. Therefore, the work within this dissertation shows that authigenic HgS minerals are not merely a sink for Hg within non-acidic natural environments and instead are a source of dissolved and gaseous Hg. This work provides critical information for predicting the transport of Hg in the environment and for developing appropriate management and remediation strategies for Hg-contaminated systems. / Engineering and Applied Sciences
4

Mercury in the Environment: Field Studies from Tampa, Bolivia, And Guyana

Howard, Joniqua A'ja 05 March 2010 (has links)
Tampa (US), Guyana (SA), and Bolivia (SA), are geographically, socially, economically, and politically unique which make them ideal sites to study issues of mercury and sustainability. Mercury’s innate ability to bioaccumulate and biomagnify in aquatic and terrestrial ecosystems poses a severe threat to both human and environmental health. The most vulnerable populations affected by mercury consumption include coastal communities, children, women of child-bearing age, the indigenous poor and persons with high environmental/occupational exposure factors. Communities in the regions of Florida, Bolivia, and Guyana whose diets are high in fish and are environmentally/occupationally exposed to mercury may be at a higher risk of mercury intoxication, especially in the absence of education on the topic. Mercury loadings in rivers, streams, and mine tailing waters and sediments ranged from 0.9-114 ng/L and 29- 2891 ng/g, respectively; whilst fish mercury loadings were 0.02-1.034 mg/kg wet wt. Although mining sites had the highest mercury sediment and water loadings there were no significant differences when compared to pristine sites in Guyana. Fish loadings above recommended EPA/WHO regulatory limits were observed at all sites and none had signage, informational warnings or educational material available. A pilot study that included four elementary schools in Tampa showed that Water Awareness Research Education (WARE), a community based participatory environmental educational program, is a sustainable solution to addressing issues of mercury exposure.

Page generated in 0.0272 seconds