Spelling suggestions: "subject:"mercury removal"" "subject:"nercury removal""
1 |
Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide NanoparticlesDesai, Ishan 2009 August 1900 (has links)
Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide was then selected for surface modification to enhance mercury removal. The surfaces of both laboratory prepared and commercially available copper oxide nanoparticles were treated with 1-octanethiol to produce
copper sulfide and/or copper alkanethiol nanoparticles. The resulting particles were characterized using
X-Ray Fluorescence(XRF),
X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The novel nanoparticles demonstrated very high mercury removal (> 99%) from both the
buffered and non-buffered aqueous solutions.
|
2 |
Synthesis and characterization of copper-containing carbon nanotubes (CNTs) and their use in the removal of pollutants in waterNhlabatsi, Zanele Precious 07 June 2012 (has links)
M.Sc. / Improper disposal of industrial effluents that contain heavy metals such as mercury causes a threat to the environment due to the toxic effects of such matal even at low concentrations. It is also known that sewage waste in water contains bacteria that pose a health hazard to human beings, animals and micro-organisms. One major concern is the transmission of diseases through drinking this water; which destabilizes the water supply. Water for human consumption therefore needs to be of high quality. In this study copper-containing multiwalled carbon nanotubes (Cu/MWCNTs) were investigated for their ability to remove and kill mercury (Hg2+) and Escherichia coli (E. coli), a major species found in the coliform bacteria. These Cu/MWCNTs were synthesized “in situ” by using an electric arc-discharge apparatus and separately via one of two multi-step wet chemical techniques namely; an electroless plating and impregnation method respectively. MWCNTs used for the wet techniques were synthesized by a nebulized spray pyrolysis (NSP) process using ferrocene/toluene under argon flow. These MWCNTs were purified and functionalized to introduce functional groups that made provision for the nucleation of the copper metal on the surface of MWCNTs. Infrared spectroscopy confirmed the successful introduction of COOH and O-H groups on the surface of MWCNTs. Raman spectroscopy confirmed a relative increase in the intensity the ratio of the D-band after functionalization. Deposition of the copper nanoparticles by electroless plating method in different volumes of 100 ml, 80 ml and 60 ml produced copper nanoparticles of varying sizes and distribution on the surface of MWCNTs. SEM images revealed densely and homogeneously distributed small sized copper nanoparticles that followed the trend; 100 ml> 80 ml > 60 ml. The volume proved to be a critical factor of the electroless plating bath with an increase or decrease of the volume affecting the concentration of the Cu2+ ions and HCHO, which also affected the pH of the plating solution.
|
3 |
Behavior and Control of Mercury in Sewage Sludge Thermal Treatment Process / 下水汚泥熱処理プロセスにおける水銀の挙動と排出制御Cheng, Yingchao 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22430号 / 工博第4691号 / 新制||工||1732(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 高岡 昌輝, 教授 米田 稔, 准教授 大下 和徹 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
4 |
Heterogeneous Catalytic Elemental Mercury Oxidation in Coal Combustion Flue GasLiu, Zhouyang January 2017 (has links)
No description available.
|
Page generated in 0.0592 seconds