• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 198
  • 72
  • 33
  • 25
  • 13
  • 11
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 655
  • 655
  • 517
  • 260
  • 188
  • 171
  • 143
  • 129
  • 117
  • 116
  • 101
  • 81
  • 75
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Turning Round: Optimizing the Anti-Inflammatory Properties of Equine Bone Marrow Derived Mesenchymal Stem Cells for Osteoarthritis Through Three-Dimensional Culture

Bogers, Sophie Helen 19 April 2017 (has links)
Osteoarthritis (OA) is a degenerative disease of diarthrodial joints causing pain and loss of joint function. Etiology is heterogeneous, but commonly involves inflammation arising from impairment of normal tissue homeostasis and/or function. A cycle of low-grade inflammation and global tissue degradation causes alteration of tissue morphology and function via primary mechanisms or inability to withstand physiological forces. Current therapies variably ameliorate symptoms but do not modify progression. Mesenchymal stem cells (MSCs) have multi-modal properties but are ineffective in ameliorating equine OA. However, anti-inflammatory activities of bone marrow derived MSCs (BMSCs) are enhanced by three-dimensional spheroid culture so equine BMSC (eBMSC) spheroids could inhibit intra-articular inflammation. The overarching hypothesis is that eBMSCs can be enhanced to produce an allogeneic eBMSC therapy that inhibits intra-articular inflammation. In vitro experiments compared differences in anti-inflammatory phenotype between spheroid and traditionally cultured monolayer eBMSCs, the viability and health of eBMSC spheroids administered through needles, and the effects of allogeneic donor on the anti-inflammatory potential of eBMSC spheroids. A model of equine LPS induced synovitis was used to investigate anti-inflammatory efficacy of spheroid eBMSCs compared to placebo or monolayer eBMSCs in vivo. eBMSCs aggregate into spheroids that have stable stem cell marker expression with increased secretion and gene expression of IL-6 and PGE2, and gene expression of SDF-1 and TSG-6. IFN𝛾 and TNFα were not produced by eBMSC spheroids and IL-10 production varied between individuals. Spheroids maintain higher viability and lower senescence than monolayer eBMSCs after injection through a needle and form in high-throughput culture without detrimental effects on expression of TSG-6, IL-6 and PGE synthases that denote an anti-inflammatory phenotype. Additionally, there is significant variation in this phenotype depending on the eBMSC donor. eBMSC spheroids reduced total nucleated cell counts and objective lameness measurements at peak levels of intra-articular inflammation compared to monolayer cultured eBMSCs in vivo. In summary, spheroids increase anti-inflammatory potential of eBMSCs and are practical for clinical use. Increased anti-inflammatory efficacy was demonstrated in a model of in vivo inflammation. This dissertation provides an understanding of the anti-inflammatory activities of eBMSC spheroids that can be used to develop an OA therapy. / Ph. D.
82

Comparison of bone marrow mesenchymal stem cells and tendon progenitor cells cultured on collagen surfaces

Brown, James Augustus 26 May 2010 (has links)
Tendon injuries are a significant cause of morbidity in performance horses with superficial digital flexor tendon injury reported to represent up to 43% of overall Thoroughbred racehorse injuries. Natural repair is slow and results in inferior structural organization and biomechanical properties and, therefore, reinjury is common. The inability of tendon to regenerate after injury, or to heal with mechanical properties comparable to the original tissue, is likely attributable to low vascularity and cellularity of the tissue, low number of resident progenitor cells, and healing under weight-bearing conditions. Strategies to improve tendon healing have focused on enhancing the metabolic response of tenocytes, modulating the organization of the newly synthesized extracellular matrix, or administering progenitor cells to enhance repair. Significant research effort has been directed at the use of adult mesenchymal stem cells as a source of progenitor cells for equine tendon repair and recent clinical applications have utilized adult autologous stem cells derived either from adipose tissue or bone marrow aspirates. Isolation of a homogenous population of stem cells from bone marrow is time-consuming, and there is much variation in cell numbers, cell viability and growth rates among samples. Recently, a population of progenitor cells has been isolated from equine flexor tendons, thus providing an alternative source of progenitor cells from the target tissue for therapeutic intervention. The interaction between cells and the extracellular matrix (ECM) is an important factor in regulation of cell function. Proliferation, migration, differentiation and gene expression of many cell types are altered by adhesion to and interaction with matrix proteins and the extracellular environment. Tendon progenitor cells reside within a niche that comprises primarily parallel collagen fibers, and this niche plays an important role in regulating their function and differentiation. Culture conditions replicating this environment could be beneficial for both cell growth and matrix gene expression. The objectives of the study were to compare cell growth kinetics and biosynthetic capabilities of bone marrow mesenchymal stem cells (BMMSCs) and tendon derived progenitor cells (TPCs) cultured on commercially available bovine, highly purified bovine, porcine, and rattus collagen sources and standard tissue culture surfaces. We hypothesized that collagen type I matrix would preferentially support TPC proliferation and up regulate gene expression for collagens and organizational components of tendon and therefore provide a culture system and progenitor cell type with advantages over the current practice of BMMSC expansion on standard cell culture plastic surfaces. Cells were isolated from 6 young adult horses, expanded, and cultured on collagen-coated tissue culture plates, and no collagen control for 7 days. Samples were analyzed for cell number on days 4 and 7, and for mRNA expression of collagen type I, collagen type III, cartilage oligomeric matrix protein (COMP), and decorin on day 7. Glycosaminoglycan (GAG) synthesis was analyzed on day 7. Differences of cell number between collagen groups and cell type, and in gene expression and GAG synthesis between collagen groups and cell types, were evaluated by use of mixed-model repeated measures ANOVA. Pair-wise comparisons were made on significant differences identified with ANOVA using Tukey's post hoc test. Statistical significance was set at P<0.05. A statistical significant (P=0.05) increase in cell number for TPCs grown on rattus collagen versus control on day 4 was observed. No difference in GAG synthesis or expression of collagen type I, collagen type III, COMP or decorin mRNA was observed between collagen groups and non-collagen controls for either cell type on day 7. TPCs cultured on all collagen types yielded more cells than similarly cultured BMMSCs on day 4, but only porcine collagen was superior on day 7. TPCs synthesized more GAG than BMMSCs when cultured on control surfaces only. BMMSCs expressed more collagen type I mRNA when cultured on control, porcine and highly-purified collagen, and more collagen type III when cultured on control, porcine, highly-purified collagen, and rattus collagen, than TPCs. Tendon-progenitor cells expressed significantly more COMP when cultured on control and all collagen types, and decorin when cultured on porcine, highly purified bovine and bovine collagen when compared to BMMSCs. The results of this study revealed an advantage to culturing TPCs on randomly organized rattus collagen during the early growth phase. The beneficial effects of collagen-coated surfaces on cell proliferation is likely related to increased surface area for attachment and expansion provided by the random collagen matrix, and/or collagen-cell interactions. Tendon progenitor cells showed superior growth kinetics and expression of the matrix organizational components, COMP and decorin, than similarly cultured BMMSCs that expressed more collagen types III and I. TPCs synthesize more GAG compared to BMMSCs when cultured on plastic surfaces and there was no induction by collagen. Tendon progenitor cells should be considered as an alternative source of progenitor cells for injured equine tendons. Further in vitro studies characterizing factors that influence gene expression of both cell types is warranted. / Master of Science
83

The influence of equine bone marrow derived stem cells on the response of cultured peripheral blood mononuclear cells to endotoxin

MacDonald, Elizabeth Steward 05 October 2015 (has links)
Endotoxemia is a major cause of morbidity and mortality in horses. The presence of large amounts of circulating endotoxin inititates a number of cell signaling pathways leading to a systemic inflammatory response. Activation of these pathways causes the release of a number of pro- and anti-inflammatory mediators. An overwhelming release of these mediators leads to the development of clinical signs associated with endotoxemia. Treatment options are limited mostly to supportive care at this time. Mesenchymal stem cells (MSCs) have been shown to have anti-inflamamtory and immune modulatory effects that may have some benefit for the treatment of horses with endotoxemia. To evaluate the effect of equine MSCs on the response to endotoxin challenge, the study was performed on two different stem cell lines with peripheral blood mononuclear cells (PBMCs) used as controls. After stimulation with endotoxin, secretion of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), and interferon gamma (IFN-γ) were determined by ELISA. The immunogenic properties of MSCs were assessed with a one-way mixed lymphocyte reaction. In addition, the ability of MSCs to alter production of cytokines from stimulated PBMCs was assessed. TNF-α was not produced by MSCs when compared to PBMCs (p = < 0.001). There was no significant difference between MSCs and PBMCs in the production of IL-6. IL-10 production was significantly different (p = <0.001) at 6 and 12 hours with MSCs producing more than PBMCs in one stem cell line only. MSCs did not stimulate proliferation of PBMCs. Co-incubation of MSCs with PBMCs decreased the production of TNF-α in both stem cell lines although it was not statistically significant (p = 0.4 and 0.9) at either time point. IL-6 secretion was suppressed at twelve hours with co-incubation. IL-10 production was increased with co-incubation in one stem cell line. MSCs secrete soluble factors that can alter PBMC cytokine production and they do not appear to be immunostimulatory. These findings have potential implication for treatment of equine inflammatory conditions. / Master of Science
84

Mesenchymal Stem Cell Mechanobiology and Tendon Regeneration

Youngstrom, Daniel W. 10 April 2015 (has links)
Tendon function is essential for quality of life, yet the pathogenesis and healing of tendinopathy remains poorly understood compared to other musculoskeletal disorders. The aim of regenerative medicine is to replace traditional tissue and organ transplantation by harnessing the developmental potential of stem cells to restore structure and function to damaged tissues. The recently discovered interdependency of cell phenotype and biophysical environment has created a paradigm shift in cell biology. This dissertation introduces a dynamic in vitro model for tendon function, dysfunction and development, engineered to characterize the mechanobiological relationships dictating stem cell fate decisions so that they may be therapeutically exploited for tendon healing. Cells respond to mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. A naturally-derived decellularized tendon scaffold (DTS) was invented to serve as a biomimetic tissue culture platform, preserving the structure and function of native extracellular matrix. DTS in concert with a newly designed dynamic mechanical strain system comprises a tendon bioreactor that is able to emulate the three-dimensional topography, extracellular matrix proteins, and mechanical strain that cells would experience in vivo. Mesenchymal stem cells seeded on decellularized tendon scaffolds subject to cyclic mechanical deformation developed strain-dependent alterations in phenotype and measurably improved tissue mechanical properties. The relative tenogenic efficacies of adult stem cells derived from bone marrow, adipose and tendon were then compared in this system, revealing characteristics suggesting tendon-derived mesenchymal stem cells are predisposed to differentiate toward tendon better than other cell sources in this model. The results of the described experiments have demonstrated that adult mesenchymal stem cells are responsive to mechanical stimulation and, while exhibiting heterogeneity based on donor tissue, are broadly capable of tenocytic differentiation and tissue neogenesis in response to specific ultrastructural and biomechanical cues. This knowledge of cellular mechanotransduction has direct clinical implications for how we treat, rehabilitate and engineer tendon after injury. / Ph. D.
85

Tendon Regeneration: Roles of Growth Factors and Phenotypic Diversity in Tendon Stem Cells

Rajpar, Ibtesam Mohamed Husein 04 March 2019 (has links)
Tendon injuries significantly impact quality of life and are often career ending. Mesenchymal stem cell (MSC) therapy is known to augment intrinsic tendon healing, however, little is known of the stem cells endogenous to tendon, the microenvironmental cues that induce tendon differentiation, and whether individual cells in an inflammatory milieu respond differently to these cues. To address these questions, a three-dimensional tenogenesis assay was developed as an efficient and reproducible metric of cellular capacity to differentiate toward tendon. In contrast to more complex assays of tenogenesis, this design incorporates a simple apparatus using commercially available plasticware for the application of uniaxial static strain in in a type I collagen cell-seeded hydrogel construct. Tendon-related gene expression, glycosaminoglycan levels, elongated cell morphologies and parallel cell alignments are enhanced with BMP-12 induction over ten days of culture. This dissertation provides novel insight to the roles of growth factors in MSC tenogenesis. Tendon healing in vivo is dependent on endogenous tendon stem cells (TSC) that mediate the inflammatory response to injury and promote synthesis of collagen and matrix remodeling, among other extracellular processes. Recent evidence suggests that these cells exist on a spectrum of differentiation potencies, and may be differently committed to the tendon fate. Individual stem cells were isolated from the tendon, and their capacities for proliferation, tri-lineage differentiation and tenogenesis were evaluated. Three distinct TSC phenotypes were revealed, and significant, positive correlations were found in quadra-differentiation potency (toward four lineages) and the expression of a strong, composite tendon phenotype. These studies have important implications in the current standard-of-care in regenerative therapies for tendon. Our benchtop tenogenesis assay can be used to determine the therapeutic potential of allogeneic MSC lines and MSCs from novel sources for 'off-the-shelf' treatments. Our study of TSCs lends valuable insight to the diversity of cell phenotypes found in tendon, and the potential contributions of each phenotype to tendon healing and homeostasis. These results further strengthen the status of tendon as a superior source of stem cells for tendon repair. / Ph. D. / Tendons are fibrous, elastic bands of collagen that connect muscles to bones and are essential to movement and proper functioning of the skeletal system. Weight-bearing tendons like the Achilles in humans and superficial digital flexor tendons in horses are particularly prone to damage and degeneration with overuse and/or aging. Bone marrow-derived stem cell treatments have shown promise in the reduction of pain and inflammation, and restoration of native tendon structure and function in cases of severe tendon injuries. However, the roles of stem cells in tendon healing, particularly their ability to transition to cell types native to tendon and integrate with an environment distinct from their own is unknown. Culturing of stem cells in three dimensional (3D) environments has enabled us to identify and understand the biochemical and mechanical signals that trigger stem cell transitions to tendon cells in tendons, but currently available 3D culture systems are complex and inefficient. In this dissertation we have developed a cost-effective and high throughput 3D culture system to assay the potential of stem cells to form tendon cells and composite tendon-like tissues. Toward this, we have also optimized the effects of known tendon proteins on the tendon fate in 3D culture of stem cells. Like most adult tissues, the tendon encompasses an in-house repository of stem cells. Tendon stem cells (TSCs) are primarily responsible for the inflammatory and reparative responses to tendon injury. Recent evidence suggests that TSCs are diverse in character, and differ from each other in their ability to form cells and tissues of fat, bone and cartilage. In this work, we provide evidence that TSCs are also differently committed to forming tendon tissue, and moreover that significant inter-relationships among gene expression patterns in these cells directly contribute to cultural diversity. In sum, our results provide novel insight to the roles of stem cells in tendon healing, particularly their response to subtle changes in their biochemical environment, and the contributions of individual cells in a milieu to a holistic reparative response.
86

The immunomodulatory properties of messenchymal stem cells and their use for immunotherapy.

Hoogduijn, Martin J., Popp, F., Verbeek, R., Masoodi, Mojgan, Nicolaou, Anna, Baan, C., Dehlke, M-H. January 2010 (has links)
No / There is growing interest in the use of mesenchymal stem cells (MSC) for immune therapy. Clinical trials that use MSC for treatment of therapy resistant graft versus host disease, Crohn's disease and organ transplantation have initiated. Nevertheless, the immunomodulatory effects of MSC are only partly understood. Clinical trials that are supported by basic research will lead to better understanding of the potential of MSC for immunomodulatory applications and to optimization of such therapies. In this manuscript we review some recent literature on the mechanisms of immunomodulation by MSC in vitro and animal models, present new data on the secretion of pro-inflammatory and anti-inflammatory cytokines, chemokines and prostaglandins by MSC under resting and inflammatory conditions and discuss the hopes and expectations of MSC-based immune therapy.
87

The development of glycosaminoglycan-based materials to promote chondrogenic differentiation of mesenchymal stem cells

Lim, Jeremy James 03 July 2012 (has links)
Tissue engineering strategies represent exciting potential therapies to repair cartilage injuries; however, difficulty regenerating the complex extracellular matrix (ECM) organization of native cartilage remains a significant challenge. Cartilaginous ECM molecules, specifically chondroitin sulfate (CS) glycosaminoglycan, may possess the ability to promote and direct MSC differentiation down a chondrogenic lineage. CS may interact with the stem cell microenvironment through its highly negative charge, generation of osmotic pressure, and sequestration of growth factors; however, the role of CS in directing differentiation down a chondrogenic lineage remains unclear. The overall goal of this dissertation was to develop versatile biomaterial platforms to control CS presentation to mesenchymal stem cells (MSCs) in order to improve understanding of the interactions with CS that promote chondrogenic differentiation. To investigate chondrogenic response to a diverse set of CS materials, progenitor cells were cultured in the presence of CS proteoglycans and CS chains in a variety of 2D and 3D material systems. Surfaces were coated with aggrecan proteoglycan to alter cell morphology, CS-based nano- and microspheres were developed as small particle carriers for growth factor delivery, and desulfated chondroitin hydrogels were synthesized to examine electrostatic interactions with growth factors and the role of sulfation in the chondrogenic differentiation of MSCs. Together these studies provided valuable insight into the unique ability of CS-based materials to control cellular microenvironments via morphological and material cues to promote chondrogenic differentiation in the development of tissue engineering strategies for cartilage regeneration and repair.
88

Analysis of in vitro functions of mesenchymal stem cells isolated from different human tissues / Skirtingų suaugusio žmogaus audinių mezenchiminių kamieninių ląstelių funkcionavimo mechanizmų tyrimai

Tunaitis, Virginijus 07 March 2011 (has links)
Human mesenchymal stem cells (MSC) have attracted a great deal of interest for their potential use in regenerative medicine and suppression of the inflammation. Nevertheless, all known therapy protocols require large amounts of MSCs, which can be obtained only by in vitro expansion. One of the most important methodological problems is associated with the use of animal-derived components in the cell culture medium. The main aim of the current research was to elucidate the influence of different serum substitutes on the proliferation, differentiation, expression of cell surface markers, and total protein expression of mesenchymal stem cells derived from human adipose tissue. In addition we were aiming to determine the features of mesenchymal stem cell populations from an exfoliated deciduous tooth (SHED) and their response to the multifunctional proinflammatory protein alpha1-antitrypsin. Our results indicate that adipose tissue derived MSCs cultivated in the presence of fetal calf serum and allogeneic human serum display similar properties, while synthetic serum substitute induces increase in growth and differentiation potential of MSCs. Moreover, our results indicate, that synthetic serum substitute also activates transcription of genes related to adipogenic and osteogenic differentiation and diminishes expression of cell surface marker CD146. In the present study, we used a proteomic approach that allowed us to compare protein expression signatures between primary cell... [to full text] / Žmogaus suaugusio organizmo mezenchiminės kamieninės ląstelės (MKL) pradėtos sėkmingai naudoti pažeistų audinių regeneracijai ir uždegiminio proceso slopinimui. Šiuolaikiniams terapijos protokolams yra reikalingi dideli ląstelių kiekiai, todėl prieš naudojimą yra būtina jas padauginti in vitro. Tačiau naudojant skirtingus MKL išskyrimo, in vitro kultivavimo ir padauginimo protokolus, yra sunku lyginti mokslinių tyrimų duomenis ir klinikinių tyrimų rezultatus. Nevienodos kultivavimo sąlygos gali įtakoti MKL funkcines savybes (augimo greitį, gebėjimą diferencijuotis, migracinį aktyvumą ir kt.). Šiame disertaciniame darbe tyrėme auginimo terpių, praturtintų skirtingais serumais (gyvulinės kilmės serumai, žmogaus alogeninis serumas, sintetinis serumas), poveikį žmogaus riebalinio audinio MKL. Taip pat charakterizavome MKL išskirtas iš žmogaus pieninių dantų pulpos ir palyginome šių ląstelių kultūros bei jų dukterinių klonų savybės. Kompleksiškai tyrėme uždegimo antiproteinazės alfa1-antitripsino (AAT) poveikį šioms ląstelėms. Nustatėme, kad, lyginant su kitais tyrime naudotais serumais, sintetinis serumo pakaitalas geriausiai skatino MKL augimą bei gebėjimą diferencijuotis adipogenine ir osteogenine kryptimis. Taip pat, skirtingai nuo kitų naudotų gyvulinės kilmės ir žmogaus serumų, sintetinis serumo pakaitalas veikė kaip adipogeninės ir osteogeninės diferenciacijos indukcijai svarbių genų PPARγ ir Msx2 transkripcijos aktyvatorius. Be to, sintetinis serumo pakaitalas slopino... [toliau žr. visą tekstą]
89

FBS free culture of porcine umbilical cord matrix cells

Parker, Steven W. January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Duane L. Davis / The common choice of medium for culturing pig umbilical cord matrix stem cells (PUCs) is high glucose Dulbecco’s Minimum Essential Medium (HG-DMEM) supplemented with fetal bovine serum (FBS). FBS is a chemically undefined supplement that encourages attachment of explants and cells and is useful for long-term proliferation in an undifferentiated state. Removing FBS from the culture medium would decrease the possibility of microbial contamination and might produce more consistent results. A defined medium would facilitate experiments to determine requirements for specific growth factors and nutrients. Starting PUCs in a FBS-free environment proved to be a challenge. The results of 15 experiments testing various media, supplements, and culture conditions indicate that PUCs initially plated in an FBS-free environment do not attach as readily as those in HG-DMEM supplemented with FBS. PUCs were collected using enzyme digestion of the whole cord or by plating explants from the cord in culture medium. In the final experiment PUCs were seeded in 24-well plates (5.0 * 10[superscript]4 viable cells per well) with a collagen coating and cultured in Knock-out DMEM (KO-DMEM) with basic fibroblast growth factor (5ng/mL) and platelet derived growth factor (5ng/mL) in a low oxygen atmosphere (5% O[subscript]2/ 5% CO[subscript]2/ 90% N[subscript]2). The total non-adherent cell count at passage 1 was 1.78 * 10[superscript]5 +or- 3.68 * 10[superscript]4 and the total adherent cells were 2.58 * 10[superscript]5 +or- 9.29 * 10[superscript]4. The well confluence during initial cell proliferation appeared similar to cells cultured in the control media with 20% FBS (total adherent cells = 6.40 * 10[superscript]5 +or- S.E. 1.61 * 10[superscript]5 and total non-adherent cells = 2.88 * 10[superscript]5 + 7.60 * 10[superscript]4). However the number of adherent cells recovered for passage 2 was considerably less for cultures in FBS-free media than for the control group. Serum may affect attachment by providing attachment factors or it could change expression of integrins or other attachment molecules on the PUCs that enhance attachment to plastic or other substrates. In future studies the requirements for attachment of PUCs should be further evaluated.
90

Calcium phosphate substrate-directed osteogenic differentiation of mesenchymal stem cells

Cameron, Katherine Rachel January 2013 (has links)
An increase in degenerative bone disease in an ageing population, combined with a rise in the number of patients suffering from bone defects caused by physical trauma, makes the repair of bone an issue of growing clinical relevance. Current treatments such as autografts and allografts have major drawbacks, including donor site morbidity, limited availability, disease transmission and immune rejection. To overcome these issues synthetic bone grafts have been developed to mimic the mineral phase of bone. Given the significant roles of silicon in bone growth and development there has been great interest in introducing silicon into synthetic bone grafts to enhance their bioactivity. Calcium phosphate based silicate containing grafts have demonstrated enhanced bioactivity, improved physical properties, enhanced protein adsorption and greater bone formation, when compared to non-silicated calcium phosphates such as hydroxyapatite. However, is not clear whether the increased bone formation associated with these materials is the result of greater osteoblast activity or a rise in numbers of osteoblasts resulting from activation and differentiation of stem/ progenitor cells. To answer this question, multipotent stem cells were cultured on silicate substituted calcium phosphate (Si-CaP) and hydroxyapatite (HA). Si-CaP promoted greater cell adhesion and enhanced proliferation when compared to HA. Cells differentiated along the osteogenic lineage on both substrates as evidenced by up regulation of osteoblast specific genes and proteins. However, cells on Si-CaP showed earlier and greater gene expression of all osteoblast genes examined, and greater protein production as detected by immunohistochemistry. Integrin gene expression analysis revealed up regulation of α an d β subunits on both substrates during differentiation. Integrins α5 and β1 expression were greater on Si-CaP than on HA, suggesting preferential binding of fibronectin. The implication of these findings for tissue engineering is clear, suggesting these substrates may be utilized to control stem cell fate in vivo and in vitro without the need for osteogenic supplementation. Furthermore, the increased rate of differentiation seen on Si-CaP may enable the development of novel substrates for osteogenic differentiation of MSC, which may have significant impact in regenerative medicine.

Page generated in 0.1025 seconds