• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Current control of localized spins

Edblom, Christin January 2010 (has links)
No description available.
2

Current control of localized spins

Edblom, Christin January 2010 (has links)
No description available.
3

Intermodulation in microresonators : for microwave amplification and nanoscale surface analysis

Tholén, Erik January 2009 (has links)
This work explores the effects of weak nonlinearity on harmonic oscillators.Two particular systems are studied experimentally: A superconductingresonator formed from a coplanar waveguide that oscillates at microwave frequencies,and the cantilever of an atomic force microscope (AFM) vibratingat ultrasonic frequencies. Both of these systems are described in the introduction,followed by a theory chapter giving a general theoretical framework for nonlinear oscillators. Basic properties of nonlinear oscillators, such asbifurcation and intermodulation, are explained using simple models. Experimental methods, including cryogenic and microwave measurement techniques,are described in some detail. The nonlinear superconducting resonator is studied for use as a parametric amplifier. A strong drive tone, called the pump, drives the oscillator nearthe point of bifurcation. A second, much weaker drive signal that is slightlydetuned from the pump, will cause energy to move from the pump to the signal, giving signal amplification. We have measured a signal gain greaterthan 22 dB in a bandwidth of 30 kHz, for a resonator pumped at 7.6 GHz.This type of amplifier is phase-sensitive, meaning that signals in phase withthe pump will be amplified, but signals in quadrature phase of the pump will be deamplified. Phase-sensitivity has important implications on the amplifier’snoise properties. With a parametric amplifier, a signal can be amplified without any additional noise being added by the amplifier, something that is fundamentally impossible for a standard amplifier. The vibrating AFM cantilever becomes a nonlinear oscillator when it is interacting with a surface. When driven with two frequencies, the amplitudeand phase of the cantilever’s response will develop mixing products, or intermodulation products, that are very sensitive to the exact form of the nonlinearity. Very small changes in the surface properties will be detectable when measuring the intermodulation products. Simultaneously measuring many intermodulation products, or acquiring an intermodulation spectrum,allows one to reconstruct the tip-surface interaction. Intermodulation AFM increases the sensitivity of the measurement or the contrast of the acquiredimages, and provides a means of rapidly measuring the nonlinear tip-surface interaction. The method promises to enhance the functionality of the AFM beyond simple topography measurement, towards quantitative analysis of the chemical or material properties of the surface. / <p>QC 20100812</p>
4

Spin splitting in open quantum dots and related systems

Evaldsson, Martin January 2005 (has links)
<p>This thesis addresses electron spin phenomena in semi-conductor quantum dots/anti-dots from a computational perspective. In the first paper (paper I) we have studied spin-dependent transport through open quantum dots, i.e., dots strongly coupled to their leads, within the Hubbard model. Results in this model were found consistent with experimental data and suggest that spin-degeneracy is lifted inside the dot – even at zero magnetic field.</p><p>Similar systems were also studied with electron-electron effects incorporated via Density Functional Theory (DFT) in paper III. Within DFT we found a significant spin-polarisation in the dot at low electron densities. As the electron density increases the spin polarisation in the dot gradually diminishes. These findings are consistent with available experimental observations. Notably, the polarisation is qualitatively different from the one found in the Hubbard model – this indicates that the simplified approach to electronelectron interaction in the Hubbard model might not always be reliable.</p><p>In paper II we propose a spin-filter device based on resonant backscattering of edge states against a quantum anti-dot embedded in a quantum wire. A magnetic field is applied and the spin up/spin down states are separated through Zeeman splitting. Their respective resonant states may be tuned so that the device can be used to filter either spin in a controlled way.</p> / Report code: LIU-Tek-Lic 2005:65
5

Resonant switching and vortex dynamics in spin-flop bi-layers

Cherepov, Sergiy January 2010 (has links)
This thesis is a study of the static and dynamic behavior of the magne-tization in spin-flop bi-layers, which consist of two soft ferromagnetic layerscoupled by dipolar forces through a thin nonmagnetic spacer. The focus ofthe work is three fold: collective spin dynamics in the anti-parallel groundstate; resonant switching in the presence of thermal agitation; and static anddynamic behavior of the system in the vortex-pair state, with a particularemphasis on the interlayer core-core interaction. Two collective spin-flop resonance modes are observed and interpreted asacoustical and optical spin precessions, in which the moments of the two lay-ers oscillate in phase and out of phase, respectively. An analytical macrospinmodel is developed to analyze the experimental results and is found to ac-curately predict the resonance frequencies and their field dependence in thelow-field anti-parallel state and the high-field near saturated state. A micro-magnetic model is developed and successfully explains the static and dynamicbehavior of the system in the entire field range, including the C- and S-typespin-perturbed scissor state of the bi-layer at intermediate fields. The optical spin-flop resonance at 3-4 GHz is used to demonstrate resonantswitching in the system, in the range of the applied field where quasi-staticswitching is forbidden. An off-axis field of relatively small amplitude canexcite large-angle scissor-like oscillations at the optical resonance frequency,which can result in a full 180-degree reversal, with the two moments switchingpast each other into the mirror anti-parallel state. It is found that the switch-ing probability increases with increasing the duration of the microwave fieldpulse, which shows that the resonant switching process is affected by thermalagitation. Micromagnetic modeling incorporating the effect of temperature isperformed and is in good agreement with the experimental results. Vortex pair states in spin-flop bi-layers are produced using high amplitudefield pulses near the optical spin resonance in the system. The stable vortex-pair states, 16 in total, of which 4 sub-classes are non-degenerate in energy, areidentified and investigated using static and dynamic applied fields. For AP-chirality vortex-pair states, the system can be studied while the two vortexcores are coupled and decoupled in a single field sweep. It is found thatthe dynamics of the AP-chirality vortex pairs is critically determined by thepolarizations of the two vortex cores and the resulting attractive or repulsivecore-core interaction. The measured spin resonance modes in the system areinterpreted as gyrational, rotational, and vibrational resonances with the helpof the analytical and micromagnetic models developed herein. A significant effort during this project was made to build two instrumentsfor surface and transport characterization of magnetic nanostructures: a high-current Scanning Tunneling Microscope for studying transport in magneticpoint contacts, and a Current In Plane Tunneling instrument for characteriz-ing unpatterned magnetic tunnel junctions. The design and implementationof the instruments as well as the test data are presented. / QC 20101209
6

Electron transport in quantum point contacts : A theoretical study

Gustafsson, Alexander January 2011 (has links)
Electron transport in mesoscopic systems, such as quantum point contacts and Aharonov-Bohm rings are investigated numerically in a tight-binding language with a recursive Green's function algorithm. The simulation reveals among other things the quantized nature of the conductance in point contacts, the Hall conductance, the decreasing sensitivity to scattering impurities in a magnetic field, and the periodic magnetoconductance in an Aharonov-Bohm ring. Furthermore, the probability density distributions for some different setups are mapped, making the transmission coefficients, the quantum Hall effect, and the cyclotron radius visible, where the latter indicates the correspondance between quantum mechanics and classical physics on the mesoscopic scale.

Page generated in 0.0367 seconds