• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advanced Quality Measures for Speech Translation / Mesures de qualité avancées pour la traduction de la parole

Le, Ngoc Tien 29 January 2018 (has links)
Le principal objectif de cette thèse vise à estimer de manière automatique la qualité de la traduction de langue parlée (Spoken Language Translation ou SLT), appelée estimation de confiance (Confidence Estimation ou CE). Le système de SLT génère les hypothèses représentées par les séquences de mots pour l'audio qui contient parfois des erreurs. En raison de multiples facteurs, la sortie de SLT, ayant une qualité insatisfaisante, pourrait causer différents problèmes pour les utilisateurs finaux. Par conséquent, il est utile de savoir combien de confiance les tokens corrects pourraient être trouvés au sein de l'hypothèse. L'objectif de l'estimation de confiance consistait à obtenir des scores qui quantifient le niveau de confiance ou à annoter les tokens cibles en appliquant le seuil de décision (par exemple, seuil par défaut = 0,5). Dans le cadre de cette thèse, nous avons proposé un boîte à outils, qui consiste en un framework personnalisable, flexible et en une plate-forme portative, pour l'estimation de confiance au niveau de mots (Word-level Confidence Estimation ou WCE) de SLT.En premier lieu, les erreurs dans le SLT ont tendance à se produire sur les hypothèses de la reconnaissance automatique de la parole (Automatic Speech Recognition ou ASR) et sur celles de la traduction automatique (Machine Translation ou MT), qui sont représentées par des séquences de mots. Ce phénomène est étudié par l'estimation de confiance (CE) au niveau des mots en utilisant les modèles de champs aléatoires conditionnels (Conditional Random Fields ou CRF). Cette tâche, relativement nouvelle, est définie et formalisée comme un problème d'étiquetage séquentiel dans lequel chaque mot, dans l'hypothèse de SLT, est annoté comme bon ou mauvais selon un ensemble des traits importants. Nous proposons plusieurs outils servant d’estimer la confiance des mots (WCE) en fonction de notre évaluation automatique de la qualité de la transcription (ASR), de la qualité de la traduction (MT), ou des deux (combiner ASR et MT). Ce travail de recherche est réalisable parce que nous avons construit un corpus spécifique, qui contient 6.7k des énoncés pour lesquels un quintuplet est normalisé comme suit : (1) sortie d’ASR, (2) transcription en verbatim, (3) traduction textuelle, (4) traduction vocale et (5) post-édition de la traduction. La conclusion de nos multiples expérimentations, utilisant les traits conjoints entre ASR et MT pour WCE, est que les traits de MT demeurent les plus influents, tandis que les traits de ASR peuvent apporter des informations intéressantes complémentaires.En deuxième lieu, nous proposons deux méthodes pour distinguer des erreurs susceptibles d’ASR et de celles de MT, dans lesquelles chaque mot, dans l'hypothèse de SLT, est annoté comme good (bon), asr_error (concernant les erreurs d’ASR) ou mt_error (concernant les erreurs de MT). Nous contribuons donc à l’estimation de confiance au niveau de mots (WCE) pour SLT par trouver la source des erreurs au sein des systèmes de SLT.En troisième lieu, nous proposons une nouvelle métrique, intitulée Word Error Rate with Embeddings (WER-E), qui est exploitée afin de rendre cette tâche possible. Cette approche génère de meilleures hypothèses de SLT lors de l'optimisation de l'hypothèse de N-meilleure hypothèses avec WER-E.En somme, nos stratégies proposées pour l'estimation de la confiance se révèlent un impact positif sur plusieurs applications pour SLT. Les outils robustes d’estimation de la qualité pour SLT peuvent être utilisés dans le but de re-calculer des graphes de la traduction de parole ou dans le but de fournir des retours d’information aux utilisateurs dans la traduction vocale interactive ou des scénarios de parole aux textes assistés par ordinateur.Mots-clés: Estimation de la qualité, Estimation de confiance au niveau de mots (WCE), Traduction de langue parlée (SLT), traits joints, Sélection des traits. / The main aim of this thesis is to investigate the automatic quality assessment of spoken language translation (SLT), called Confidence Estimation (CE) for SLT. Due to several factors, SLT output having unsatisfactory quality might cause various issues for the target users. Therefore, it is useful to know how we are confident in the tokens of the hypothesis. Our first contribution of this thesis is a toolkit LIG-WCE which is a customizable, flexible framework and portable platform for Word-level Confidence Estimation (WCE) of SLT.WCE for SLT is a relatively new task defined and formalized as a sequence labelling problem where each word in the SLT hypothesis is tagged as good or bad accordingto a large feature set. We propose several word confidence estimators (WCE) based on our automatic evaluation of transcription (ASR) quality, translation (MT) quality,or both (combined/joint ASR+MT). This research work is possible because we built a specific corpus, which contains 6.7k utterances for which a quintuplet containing: ASRoutput, verbatim transcript, text translation, speech translation and post-edition of the translation is built. The conclusion of our multiple experiments using joint ASR and MT features for WCE is that MT features remain the most influent while ASR features can bring interesting complementary information.As another contribution, we propose two methods to disentangle ASR errors and MT errors, where each word in the SLT hypothesis is tagged as good, asr_error or mt_error.We thus explore the contributions of WCE for SLT in finding out the source of SLT errors.Furthermore, we propose a simple extension of WER metric in order to penalize differently substitution errors according to their context using word embeddings. For instance, the proposed metric should catch near matches (mainly morphological variants) and penalize less this kind of error which has a more limited impact on translation performance. Our experiments show that the correlation of the new proposed metric with SLT performance is better than the one of WER. Oracle experiments are also conducted and show the ability of our metric to find better hypotheses (to be translated) in the ASR N-best. Finally, a preliminary experiment where ASR tuning is based on our new metric shows encouraging results.To conclude, we have proposed several prominent strategies for CE of SLT that could have a positive impact on several applications for SLT. Robust quality estimators for SLT can be used for re-scoring speech translation graphs or for providing feedback to the user in interactive speech translation or computer-assisted speech-to-text scenarios.Keywords: Quality estimation, Word confidence estimation (WCE), Spoken Language Translation (SLT), Joint Features, Feature Selection.
2

De l'utilisation de mesures de confiance en traduction automatique : évaluation, post-édition et application à la traduction de la parole / On the use of confidence measures in machine translation : evaluation, post edition and application to speech translation

Raybaud, Sylvain 05 December 2012 (has links)
Cette thèse de doctorat aborde les problématiques de l'estimation de confiance pour la traduction automatique, et de la traduction automatique statistique de la parole spontanée à grand vocabulaire. J'y propose une formalisation du problème d'estimation de confiance, et aborde expérimentalement le problème sous le paradigme de la classification et régression multivariée. Je propose une évaluation des performances des différentes méthodes évoquées, présente les résultats obtenus lors d'une campagne d'évaluation internationale et propose une application à la post-édition par des experts de documents traduits automatiquement. J'aborde ensuite le problème de la traduction automatique de la parole. Après avoir passé en revue les spécificités du medium oral et les défis particuliers qu'il soulève, je propose des méthodes originales pour y répondre, utilisant notamment les réseaux de confusion phonétiques, les mesures de confiances et des techniques de segmentation de la parole. Je montre finalement que le prototype propose rivalise avec des systèmes état de l'art à la conception plus classique / In this thesis I shall deal with the issues of confidence estimation for machine translation and statistical machine translation of large vocabulary spontaneous speech translation. I shall first formalize the problem of confidence estimation. I present experiments under the paradigm of multivariate classification and regression. I review the performances yielded by different techniques, present the results obtained during the WMT2012 internation evaluation campaign and give the details of an application to post edition of automatically translated documents. I then deal with the issue of speech translation. After going into the details of what makes it a very specific and particularly challenging problem, I present original methods to partially solve it, by using phonetic confusion networks, confidence estimation techniques and speech segmentation. I show that the prototype I developped yields performances comparable to state-of-the-art of more standard design
3

Structuration automatique de flux télévisuels

Guinaudeau, Camille 07 December 2011 (has links) (PDF)
L'augmentation du nombre de documents multimédias disponibles rend nécessaire la mise en place de méthodes de structuration automatique capables de faciliter l'accès à l'information contenue dans les documents, tout en étant suffisamment génériques pour pouvoir structurer des documents tout-venants. Dans ce cadre, nous proposons deux types de structuration, linéaire et hiérarchique, s'appuyant sur les transcriptions automatiques de la parole prononcée dans les documents. Ces transcriptions, indépendantes du type des documents considérés, sont exploitées par le biais de méthodes issues du traitement automatiques des langues (TAL). Les deux techniques de structuration, ainsi que la phase de segmentation thématique sur laquelle elles reposent, donnent lieu à plusieurs contributions originales. Tout d'abord, la méthode de segmentation thématique employée, originellement développée pour du texte écrit, est adaptée aux particularités des transcriptions automatiques de vidéos professionnelles - erreurs de transcription, faible nombre de répétitions de vocabulaire. Le critère de cohésion lexicale sur lequel elle se fonde est, en effet, sensible à ces spécificités, ce qui pénalise fortement les performances de l'algorithme. Cette adaptation est mise en place, d'une part grâce à la prise en compte, lors du calcul de la cohésion lexicale, de connaissances linguistiques et d'informations issues de la reconnaissance automatique de la parole et du signal (relations sémantiques, prosodie, mesures de confiance), et d'autre part grâce à des techniques d'interpolation de modèles de langue. À partir de cette étape de segmentation thématique, nous proposons une méthode de structuration thématique linéaire permettant de mettre en relation des segments abordant des thématiques similaires. La méthode employée, fondée sur une technique issue du domaine de la recherche d'information, est adaptée aux données audiovisuelles grâce à des indices prosodiques, qui permettent de favoriser les mots proéminents dans le discours, et des relations sémantiques. Finalement, nous proposons un travail plus exploratoire examinant différentes pistes pour adapter un algorithme de segmentation thématique linéaire à une tâche de segmentation thématique hiérarchique. Pour cela, l'algorithme de segmentation linéaire est modifié - ajustement du calcul de la cohésion lexicale, utilisation de chaines lexicales - pour prendre en compte la distribution du vocabulaire au sein du document à segmenter. Les expérimentations menées sur trois corpora composés de journaux télévisés et d'émissions de reportages, transcrits manuellement et automatiquement, montrent que les approches proposées conduisent à une amélioration des performances des méthodes de structuration développées.
4

Confidence Measures for Alignment and for Machine Translation / Mesures de Confiance pour l’Alignement et pour la Traduction Automatique

Xu, Yong 26 September 2016 (has links)
En linguistique informatique, la relation entre langues différentes est souventétudiée via des techniques d'alignement automatique. De tels alignements peuvent êtreétablis à plusieurs niveaux structurels. En particulier, les alignements debi-textes aux niveaux phrastiques et sous-phrastiques constituent des sources importantesd'information dans pour diverses applications du Traitement Automatique du Language Naturel (TALN)moderne, la Traduction Automatique étant un exemple proéminent.Cependant, le calcul effectif des alignements de bi-textes peut êtreune tâche compliquée. Les divergences entre les langues sont multiples,de la structure de discours aux constructions morphologiques.Les alignements automatiques contiennent, majoritairement, des erreurs nuisantaux performances des applications.Dans cette situation, deux pistes de recherche émergent. La première est de continuerà améliorer les techniques d'alignement.La deuxième vise à développer des mesures de confiance fiables qui permettent aux applicationsde sélectionner les alignements selon leurs besoins.Les techniques d'alignement et l'estimation de confiance peuvent tous les deuxbénéficier d'alignements manuels.Des alignements manuels peuventjouer un rôle de supervision pour entraîner des modèles, et celuides données d'évaluation. Pourtant, la création des telles données est elle-mêmeune question importante, en particulier au niveau sous-phrastique, où les correspondancesmultilingues peuvent être implicites et difficiles à capturer.Cette thèse étudie des moyens pour acquérir des alignements de bi-textes utiles, aux niveauxphrastiques et sous-phrastiques. Le chapitre 1 fournit une description de nos motivations,la portée et l'organisation du travail, et introduit quelques repères terminologiques et lesprincipales notations.L'état-de-l'art des techniques d'alignement est revu dans la Partie I. Les chapitres 2 et3 décriventles méthodes respectivement pour l'alignement des phrases et des mots.Le chapitre 4 présente les bases de données d'alignement manuel,et discute de la création d'alignements de référence. Le reste de la thèse, la Partie II,présente nos contributions à l'alignement de bi-textes, en étudiant trois aspects.Le chapitre 5 présente notre contribution à la collection d'alignements de référence. Pourl'alignement des phrases, nous collectons les annotations d'un genre spécifiquede textes: les bi-textes littéraires. Nous proposons aussi un schéma d'annotation deconfiance. Pour l'alignement sous-phrastique,nous annotons les liens entre mots isolés avec une nouvelle catégorisation, et concevonsune approche innovante de segmentation itérative pour faciliter l'annotation des liens entre groupes de mots.Toutes les données collectées sont disponibles en ligne.L'amélioration des méthodes d'alignement reste un sujet important de la recherche. Nousprêtons une attention particulière à l'alignement phrastique, qui est souvent le point dedépart de l'alignement de bi-textes. Le chapitre 6 présente notre contribution. En commençantpar évaluer les outils d'alignement d'état-de-l'art et par analyser leurs modèles et résultats,nous proposons deux nouvelles méthodes pour l'alignement phrastique, qui obtiennent desperformances d'état-de-l'art sur un jeu de données difficile.L'autre sujet important d'étude est l'estimation de confiance. Dans le chapitre 7, nousproposons des mesures de confiance pour les alignements phrastique et sous-phrastique.Les expériences montrent que l'estimation de confiance des liens d'alignement reste undéfi remarquable. Il sera très utile de poursuivre cette étude pour renforcer les mesuresde confiance pour l'alignement de bi-textes.Enfin, notons que les contributions apportées dans cette thèse sont employées dans uneapplication réelle: le développement d'une liseuse qui vise à faciliter la lecturedes livres électroniques multilingues. / In computational linguistics, the relation between different languages is often studied through automatic alignment techniques. Such alignments can be established at various structural levels. In particular, sentential and sub-sentential bitext alignments constitute an important source of information in various modern Natural Language Processing (NLP) applications, a prominent one being Machine Translation (MT).Effectively computing bitext alignments, however, can be a challenging task. Discrepancies between languages appear in various ways, from discourse structures to morphological constructions. Automatic alignments would, at least in most cases, contain noise harmful for the performance of application systems which use the alignments. To deal with this situation, two research directions emerge: the first is to keep improving alignment techniques; the second is to develop reliable confidence measures which enable application systems to selectively employ the alignments according to their needs.Both alignment techniques and confidence estimation can benefit from manual alignments. Manual alignments can be used as both supervision examples to train scoring models and as evaluation materials. The creation of such data is, however, an important question in itself, particularly at sub-sentential levels, where cross-lingual correspondences can be only implicit and difficult to capture.This thesis focuses on means to acquire useful sentential and sub-sentential bitext alignments. Chapter 1 provides a non-technical description of the research motivation, scope, organization, and introduces terminologies and notation. State-of-the-art alignment techniques are reviewed in Part I. Chapter 2 and 3 describe state-of-the-art methods for respectively sentence and word alignment. Chapter 4 summarizes existing manual alignments, and discusses issues related to the creation of gold alignment data. The remainder of this thesis, Part II, presents our contributions to bitext alignment, which are concentrated on three sub-tasks.Chapter 5 presents our contribution to gold alignment data collection. For sentence- level alignment, we collect manual annotations for an interesting text genre: literary bitexts, which are very useful for evaluating sentence aligners. We also propose a scheme for sentence alignment confidence annotation. For sub-sentential alignment, we annotate one-to-one word links with a novel 4-way labelling scheme, and design a new approachfor facilitating the collection of many-to-many links. All the collected data is released on-line.Improving alignment methods remains an important research subject. We pay special attention to sentence alignment, which often lies at the beginning of the bitext alignment pipeline. Chapter 6 presents our contributions to this task. Starting by evaluating state-of-the-art aligners and analyzing their models and results, we propose two new sentence alignment methods, which achieve state-of-the-art performance on a difficult dataset.The other important subject that we study is confidence estimation. In Chapter 7, we propose confidence measures for sentential and sub-sentential alignments. Experiments show that confidence estimation of alignment links is a challenging problem, and more works on enhancing the confidence measures will be useful.Finally, note that these contributions have been employed in a real world application: the development of a bilingual reading tool aimed at facilitating the reading in a foreign language.

Page generated in 0.0566 seconds