Spelling suggestions: "subject:"beta heuristic"" "subject:"beta euristic""
41 |
Análise comparativa de um modelo de programação convexa e meta-heurística para o planejamento de redes de distribuição de energia elétrica com fontes de geração distribuída renováveis e não renováveis /Home Ortiz, Juan Manuel January 2019 (has links)
Orientador: José Roberto Sanches Mantovani / Resumo: Neste trabalho propõem-se formulações matemáticas e metodologias para resolver o problema de planejamento da expansão e operação de sistemas de distribuição de energia elétrica de longo prazo com instalação de geração distribuída despachável, renovável e dispositivos armazenadores de energia, considerando as incertezas nos parâmetros e variáveis envolvidas no comportamento do sistema. No modelo de otimização desenvolvido considera- se uma formulação com espaço de busca convexo como um problema de programação cônica inteira de segunda ordem. Como primeira metodologia de solução para o modelo matemático proposto, usam-se solvers de otimização comerciais através de linguagem de programação matemática. Em segundo lugar é proposta a técnica de otimização meta-heurística VND combinada com um solver de otimização para resolver o modelo de otimização desenvolvido. Os algoritmos e modelos matemáticos de otimização usados para resolver o planejamento de sistemas de distribuição são implementados em AMPL e testados em sistemas presentes na literatura. Finalmente são comparadas as metodologias segundo a solução obtida e desempenho em tempo computacional. / Abstract: This work proposes mathematical formulations and methodologies to solve the long-term electric power distribution system operation and expansion planning with distributed renewable energy sources and energy storage devices, considering the uncertainties in the involved parameters and variables in the system behavior. In the developed optimization model, a convex formulation is considered as integer second-order conic programming problem. The first solution methodology for the proposed mathematical model, the commercial optimization solvers that uses mathematical modelling language is used. In the second way, the VND meta-heuristic optimization technique is proposed combined with the optimization solver to analyze the obtained solutions of the search through optimal neighborhoods. The mathematical optimization model and the proposed algorithm used to solver the planning of distribution systems are implemented in AMPL and tested in literature’s systems. Finally, the methodologies according to the obtained solution and computational time performance are compared. / Doutor
|
42 |
Novas estratégias de implementação da meta-heurística VNS aplicada na otimização de grade horária /Silva, Odilon Novaes. January 2019 (has links)
Orientador: Rubén Augusto Romero Lázaro / Resumo: Neste projeto de pesquisa, é abordado o problema otimização de grade horária. O tipo de problema de grade horária abordado é aquele que tem o enunciado e a estrutura de dados apresentado no site da Competição Internacional de Otimização do Problema de Grade Horária. Esse problema pode ser modelado como sendo um problema de Programação Linear Binária de grande porte. Entretanto, os solvers comerciais disponíveis, como o CPLEX, não tem a capacidade de encontrar as soluções ótimas das 20 instâncias mostradas no site da Competição Internacional de Otimização do Problema de Grade Horária. Neste trabalho foi desenvolvido um algoritmo VNS especializado para resolver o problema de otimização de grade horária. A parcela inovadora da proposta está relacionado com o uso da lógica de partição para encontrar a melhor solução vizinha da solução corrente de forma eficiente e para uma estrutura de vizinhança complexa e formada por muitos elementos. Dessa forma, a proposta de otimização se tornou muito eficiente na resolução das 20 instâncias cujos dados se encontram no site da Competição Internacional de Otimização do Problema de Grade Horária. / Abstract: In this research project, we address the optimization timetabling problem. The type of timetabling problem addressed is one that has the statement and data structure displayed on the site of the International Competition of Optimization of the Timetabling Problem. This problem can be modeled as a large Binary Linear Programming Problem. However, the commercial solvers available, such as CPLEX, do not have the ability to nd the optimal solutions from the 20 instances shown on the site of the International Competition of Optimization of the timetabling Problem. In this work a specialized VNS algorithm was developed to solve the optimization of Timetabling Problem . The innovative part of the proposal is related to the use of partition logic to nd the best neighborhood solution of the current solution e ciently and to a structure of complex neighborhood formed by many elements. In this way, the optimization proposal became very e cient in the resolution of the 20 instances whose data were found on the website of the International Competition for Optimization of the Timetabling Problem. / Doutor
|
43 |
Algoritmo genético com operador de transgenia para minimização de makespan da programação reativa da produçãoViana, Monique Simplicio 29 August 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-08-30T12:26:40Z
No. of bitstreams: 1
DissMSV.pdf: 2771156 bytes, checksum: add74067c9db203edececa7202e83a52 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-20T14:06:15Z (GMT) No. of bitstreams: 1
DissMSV.pdf: 2771156 bytes, checksum: add74067c9db203edececa7202e83a52 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-20T14:06:22Z (GMT) No. of bitstreams: 1
DissMSV.pdf: 2771156 bytes, checksum: add74067c9db203edececa7202e83a52 (MD5) / Made available in DSpace on 2017-09-20T14:11:11Z (GMT). No. of bitstreams: 1
DissMSV.pdf: 2771156 bytes, checksum: add74067c9db203edececa7202e83a52 (MD5)
Previous issue date: 2016-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In recent years, several studies have been carried out to minimize the production time (makespan)
in a production schedule of a scenario that represents a manufacturing system. The problem of
production scheduling is classified as a combinatorial problem belongs to the NP-hard class of
computational problems. Furthermore, in a real world production system, there are many
unexpected events (eg, review of production, entry of new products, breaking machines, etc.). To
deal with the interruptions of the initial programming, we need to change any settings, which is
called reactive production schedule or, simply, reactive scheduling. As a problem of combinatorial
features, meta-heuristics is widely used in its resolution. This paper proposes a method that uses an
evolutionary meta-heuristic Genetic Algorithm in conjunction with an operator called
“Transgenics”, which allows to manipulate the genetic material of individuals adding features
which are believed to be important, with the proposal to direct some population of individuals to a
more favorable solution to the problem without removing the diversity of the population with a
lower cost of time. The objective of this study is to use the Genetic Algorithm with transgenics
operator obtain a reactive programming acceptable response time to minimize the makespan value.
The objective of this study is to use the Genetic Algorithm with transgenics Operator obtain a
reactive programming acceptable response time to minimize the makespan value. Experimental
results show the proposed algorithm is able to bring better results than the makespan algorithm and
compared in a shorter processing time due to the search direction which provides transgenic
operator. / Nos últimos anos, várias pesquisas vêm sendo realizadas a fim de minimizar o tempo total de
produção (makespan) em uma programação da produção de algum cenário que representa um
sistema de manufatura. O problema da programação da produção é classificado como sendo um
problema combinatório pertencente à classe NP-Hard dos problemas computacionais. Além disso,
em um sistema de produção real, há muitos eventos inesperados (por exemplo, a revisão da
produção, chegada de novos produtos, quebra máquinas, etc.). Para lidar com as interrupções da
programação inicial, é preciso realizar outra programação, a qual é denominada de programação
reativa da produção. Sendo um problema de recursos combinatórios, é amplamente utilizado metaheurísticas
em sua resolução. Neste trabalho é proposto um método que faz uso de uma metaheurística
evolutiva Algoritmo Genético em conjunto com um operador intitulado Operador de
Transgenia, no qual possibilita manipular o material genético dos indivíduos acrescentando
características das quais se acredita serem importantes, com a proposta de direcionar alguns
indivíduos da população para uma solução mais favorável para o problema sem tirar a diversidade
da população com um custo menor de tempo. O Objetivo deste trabalho é utilizando o Algoritmo
Genético com Operador de Transgenia obter uma programação reativa em tempo de resposta
aceitável, visando minimizar o valor de makespan. Resultados experimentais mostraram que
algoritmo proposto foi capaz de trazer resultados de makespan melhores que os algoritmos
comparados e em um menor tempo de processamento, devido ao direcionamento na busca que
operador de transgenia proporciona.
|
44 |
Um algoritmo h?brido para o problema de roteamento de ve?culos com frotas heterog?neasFerreira, Vanessa Danielle Santos 13 July 2011 (has links)
Made available in DSpace on 2014-12-17T14:53:00Z (GMT). No. of bitstreams: 1
VanessaDSF_DISSERT.pdf: 862759 bytes, checksum: d1e5a8faf841592d593e48b4f4218e61 (MD5)
Previous issue date: 2011-07-13 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / This paper aims to propose a hybrid meta-heuristics for the Heterogeneous Fleet Vehicle Routing Problem (HVRP), which is a combinatorial optimization problem NP-hard, and is characterized by the use of a limited fleet consists of different vehicles with different capacities. The hybrid method developed makes use of a memetic algorithm associated with the component optimizer Vocabulary Building. The resulting hybrid meta-heuristic was implemented in the programming language C + + and computational experiments generated good results in relation to meta-heuristic applied in isolation, proving the efficiency of the proposed method. / O presente trabalho visa propor uma meta-heur?stica h?brida para o Problema de Roteamento de Ve?culos com Frotas Heterog?neas (PRVFH), que ? um problema de otimiza??o combinat?ria NP-dif?cil, e que se caracteriza pelo uso de uma frota limitada composta por ve?culos distintos com capacidades distintas. O m?todo h?brido desenvolvido utiliza-se de um algoritmo mem?tico associado ao componente otimizador Vocabulary Building. A meta-heur?stica h?brida resultante foi implementada na linguagem de programa??o C++ e os experimentos computacionais geraram bons resultados em rela??o ? meta-heur?stica aplicada isoladamente, comprovando a efici?ncia do m?todo proposto.
|
45 |
Approche générique pour la prise de décisions multi-niveaux, contribution à la gestion des systèmes de production de soins en réseau / Generic approach of multi-level decisions making, contribution to the management of healthcare production system networkChen, Linjie 03 July 2015 (has links)
Le système de santé français est confronté au défi d’augmentation permanente de la demande en soins, sous une forte pression financière. Dans la stratégie nationale de santé, une des grandes orientations est de développer une base de coopération impliquant l’ensemble des acteurs et de leur engagement. Ces enjeux demandent au génie hospitalier de rechercher une efficience dans une échelle encore plus globale, ce qui demande d’intégrer les problèmes locaux et leurs outils d’optimisation qui présentent en général un haut degré de fragmentation, afin de contribuer à l’amélioration globale du système. Dans ce contexte-là, initialisé par un projet de conception du système de soins en réseau avec ressource de production mutualisée, nous proposons à travers ce mémoire de thèse une méthode générique pour résoudre le problème d’optimisation multi-niveaux dans lequel les décisions interdépendantes doivent être prises à différents niveaux dans une structure hiérarchique, ou aux étapes successives. Les décisions faites sont souvent corrélées, surtout pour une topologie de décisions enchaînées en hiérarchique que nous définissons sous le terme de « sous-structure optimale feedback ». La résolution de ce type de problème doit s’adapter pour prendre en compte autant que possible les implications liées aux décisions corrélées. La méthode proposée est basée sur la méta-heuristique PSO, elle utilise une procédure récursive pour définir le transfert des paramètres des sous-problèmes descendant et des évaluations ascendant à travers de multiples espaces de recherche, en assurant la cohérence de la convergence du problème global. Les applications et les analyses ont montrées que la méthode est assez générique et capable de produire la performance et la qualité de résolution proche de celles de la littérature / French healthcare system confronts the challenges of permanent increase in demand for healthcare, under heavy financial pressure. In the national healthcare strategy, a key focus is to develop a cooperation framework involving all organizations and units. These challenges require healthcare engineering to find efficiency in a more global scale, which means to integrate local optimization problems and decision tools that have generally a high degree of fragmentation in order to contribute to the overall improvement of the system. In this thesis, initiated by a shared unit-dose drug distribution system design project, a generic method was developed to solve the multi-level optimization problem in which interdependent decisions are made at different levels in a hierarchical structure, or at successive stages. The decisions made are often correlated, particularly for decisions in hierarchical topologies that we define by the term "optimal substructure with feedback". The resolution of this problem must be adapted to take into account all implications for correlated decisions. The proposed method is based on the meta-heuristic PSO, it uses a recursive procedure to define the top-down transfer of parameters and the bottom-up feedback of fitness through multiple search spaces, and ensures the consistency of global problem convergence. Our applications and analyzes have shown that this method is generic and is able to provide similar resolution performance and quality compared to the literature references
|
46 |
Reformulation et décomposition pour un problème d'allocation de ressources dans un réseau optiqueVignac, Benoît 29 January 2010 (has links)
Les réseaux optiques sont aujourd’hui l’élément de base des systèmes de communica- tions modernes, en particulier l’Internet. Grâce au multiplexage en longueurs d’onde et au groupage du tra?c, la bande passante disponible sur une ?bre optique est supérieure à plusieurs térabits par seconde. Cependant les équipements opto-électroniques qui permettent d’opérer ces réseaux sont très coûteux car il doivent fonctionner à un débit très important. Le problème de groupage et du routage d’un ensemble de requêtes couplé avec l’affectation des longueurs d’onde (GRWA) est donc un problème stratégique de première importance. L’objectif est de minimiser le coût du réseau, évalué comme le nombre de ports optiques installés aux nœuds. Il peut être modélisé sous la forme d’un problème d’allocation de ressources dans un réseau à capacité multi-niveaux avec multi-?ots non bifurqués. Cette catégorie de problème est connue pour être très dif?cile compte tenu de la faiblesse de la relaxation linéaire des formulations associées. Les travaux réalisés durant cette thèse ont consisté en le développement de méthodes de résolution pour ce problème à partir de multiples techniques de recherche opéra- tionnelle : méta-heuristique de type recherche avec tabous, décomposition de Dantzig- Wolfe, décomposition de Benders, reformulation en variables binaires, méthode de plans coupants, heuristique d’arrondi. Les méthodes résultantes, dont certaines sont hybrides, permettent d’avoir un aperçu des méthodes ef?caces pour ce type de problème. En partic- ulier, les méthodes basées sur la décomposition de Benders, qui donnent lieu à des procédures d’optimisation hiérarchique dans lesquelles l’affectation de longueurs d’onde est placée au dernier niveau, sont les méthodes les plus ef?caces car elles permettent de séparer le routage optique du routage physique. En?n, nous utilisons la meilleure méthode de résolution pour observer l’impact des contraintes de délais sur la qualité des solutions. / Optical networks are the core element of modern communication systems and in particu- lar Internet. With wavelength multiplexing and grooming capability, terabits per second bandwidth can be reached. However, opto-electronic equipment used to operate these networks are very expensive as their bit rate must be very large. The grooming, routing and wavelength assignment (GRWA) problem, which consists in minimizing the net- work cost, evaluated by the number of required optical ports, while guaranteeing that each request is granted, is of great interest. The GRWA problem can be modeled as a multi-layer capacitated network design problem with non-bifurcated multi-?ows. This type of problem is known to be hard to solve as their linear relaxation is weak. The objective of this work was to develop solution methods based on multiple oper- ations research techniques : Tabu search based meta-heuristic, Dantzig-Wolfe decompo- sition, Benders decomposition, 0 1 reformulation, cutting-planes, rounding heuristic. The resulting solution tools, some of them hybrid, give a perspective on the effective solution approaches for this type of problem. From the experiments, it turns out that the methods based on Benders’ decomposition, which lead to hierarchical optimization procedures, are the most ef?cient as they allow to separate the optical routing from the physical routing with the wavelength assignment decisions taken in the lower stage sub- problem. In addition to the approach comparison, we use the most effective method to evaluate the impact of the delay constraints on the solution quality.
|
47 |
Abordagens de solução para o problema de alocação de aulas a salas / Solution approaches for the classroom assignment problemRafael Bernardo Zanetti Cirino 06 May 2016 (has links)
Esta Dissertação aborda o Problema de Alocação de Aulas a Salas (PAAS), também conhecido como Problema de Alocação de Salas (PAS). As instituições de ensino superior, no começo de seus calendários letivos, resolvem um PAAS ao determinar os espaços a serem utilizados para as atividades didáticas. Porém, em muitas destas instituições o PAAS é ainda resolvido manualmente, gerando altas cargas de trabalho para os responsáveis. Neste trabalho, o Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP) foi tomado como caso de estudo para o PAAS. Um modelo de programação matemática inteiro é proposto e abordado por técnicas de resolução exata, metaheurísticas mono-objetivo e uma abordagem multi-objetivo. Uma estrutura de vizinhança proposta obteve resultados comparáveis à da metodologia exata, para um tempo fixo de execução. Demonstra-se que, a abordagem multi-objetivo é uma possibilidade de contornar algumas dificuldades clássicas do problema, como incertezas sobre a escolha dos pesos das métricas. Os métodos de solução propostos para o problema fornecem, aos responsáveis, bons instrumentos de auxílio à tomada de decisão para o PAAS. / This Dissertation addresses the Classroom Assignment Problem (CAP). All Higher Education Institutes, at the schoolyear\'s begin, faces a CAP to define where the classes will be taught. However, many of those still solves this problem manually, demanding high efforts from the responsible staff. In this study, the Universidade de São Paulo\'s (USP) Instituto de Ciências Matemáticas e de Computação (ICMC) was tackled as study case for the CAP. An Integer Programming Model is proposed and tackled by exact methods, meta-heuristics and a multi-objective approach. A novel neighborhood operator is proposed for the local search and obtains good results, even comparable to the exact method. The multi-objective approach is shown to overcome some of the classical adversity of the mono-objective approach, e.g., choosing weights to quality metric. Those CAP\'s proposed solution methods, gives the responsible staff a good decision making support.
|
48 |
Implementace problému směrování vozidel pomocí algoritmu mravenčích kolonií a částicových rojů / Implementation of the Vehicle Routing Problem Using the Algorithm of Ant Colonies and Particle SwarmsHanek, Petr January 2019 (has links)
This diploma thesis focuses on meta-heuristic algorithms and their ability to solve difficult optimization problems in polynomial time. The thesis describes different kinds of meta-heuristic algorithms such as genetic algorithm, particle swarm optimization or ant colony optimization. The implemented application was written in Java and contains ant colony optimization for capacitated vehicle routing problem and particle swarm optimization which finds the best possible parameters for ant colonies.
|
49 |
Local Search, data structures and Monte Carlo Search for Multi-Objective Combinatorial Optimization Problems / Recherche Locale, structures de données et Recherche Monte-Carlo pour les problèmes d'optimisation combinatoire Multi-ObjectifCornu, Marek 18 December 2017 (has links)
De nombreux problèmes d'optimisation combinatoire considèrent plusieurs objectifs, souvent conflictuels. Cette thèse s'intéresse à l'utilisation de méthodes de recherche locale, de structures de données et de recherche Monte-Carlo pour la recherche de l'ensemble des solutions efficaces de tels problèmes, représentant l'ensemble des meilleurs compromis pouvant être réalisés en considération de tous les objectifs.Nous proposons une nouvelle méthode d'approximation appelée 2-Phase Iterated Pareto Local Search based on Decomposition (2PIPLS/D) combinant les concepts de recherche locale Pareto (PLS) et de décomposition. La PLS est une descente de recherche locale adaptée au multi-objectif, et la décomposition consiste en la subdivision du problème multi-objectif en plusieurs problèmes mono-objectif. Deux méthodes d'optimisation mono-objectif sont considérées: la recherche locale itérée et la recherche Monte-Carlo imbriquée. Deux modules principaux sont intégrés à 2PIPLS/D. Le premier généralise et améliore une méthode existante et génère un ensemble initial de solutions. Le second réduit efficacement l'espace de recherche et permet d'accélérer la PLS sans négliger la qualité de l'approximation générée. Nous introduisons aussi deux nouvelles structures de données gérant dynamiquement un ensemble de solutions incomparables, la première est spécialisée pour le cas bi-objectif et la seconde pour le cas général.2PIPLS/D est appliquée au Problème du Voyageur de Commerce bi-objectif et tri-objectif et surpasse ses concurrents sur les instances testées. Ensuite, 2PIPLS/D est appliquée à un nouveau problème avec cinq objectifs en lien avec la récente réforme territoriale d'agrandissement des régions françaises. / Many Combinatorial Optimization problems consider several, often conflicting, objectives. This thesis deals with Local Search, data structures and Monte Carlo Search methods for finding the set of efficient solutions of such problems, which is the set of all best possible trade-offs given all the objectives.We propose a new approximation method called 2-Phase Iterated Pareto Local Search based on Decomposition (2PIPLS/D) combining the notions of Pareto Local Search (PLS) and Decomposition. PLS is a local search descent adapted to Multi-Objective spaces, and Decomposition consists in the subdivision of the Multi-Objective problem into a number of Single-Objective problems. Two Single-Objective methods are considered: Iterated Local Search and Nested Monte Carlo Search. Two main components are embedded within the 2PIPLS/D framework. The first one generalizes and improves an existing method generating an initial set of solutions. The second one reduces efficiently the search space and accelerates PLS without notable impact on the quality of the generated approximation. We also introduce two new data structures for dynamically managing a set of incomparable solutions. The first one is specialized for the bi-objective case, while the second one is general.2PIPLS/D is applied to the bi-objective and tri-objective Traveling Salesman Problem and outperforms its competitors on tested instances. Then, 2PIPLS/D is instantiated on a new five-objective problem related to the recent territorial reform of French regions which resulted in the reassignment of departments to new larger regions.
|
50 |
Meta-heuristic Solution Methods for Rich Vehicle Routing ProblemsNguyen, Khanh Phuong 06 1900 (has links)
Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application.
Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes.
La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème.
La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement. / For more than half of century, since the paper of Dantzig and Ramser (1959) was introduced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied problems in operations research due to its methodological interest and practical relevance in many fields such as transportation, logistics, telecommunications, and production. The general goal of the VRP is to optimize the use of transportation resources to service customers with respect to side-constraints deriving from real-world applications.
The practical applications of the VRP may have a variety of constraints, and obviously, the larger the set of constraints that need to be considered, i.e., corresponding to `richer' VRPs, the more difficult the task of problem solving. The needs to study closer representations of actual applications and methodologies producing high-quality solutions quickly to larger-sized application problems have increased steadily, providing significant challenges for the VRP research community. This dissertation explores these extensional issues of the VRP.
The first part of the dissertation addresses the Periodic Vehicle Routing Problem with Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with Time Windows (VRPTW) by extending the planning horizon to several days where customers generally do not require delivery on every day, but rather according to one of a limited number of possible combinations of visit days. This generalization extends the scope of applications to many commercial distribution activities such as waste collection, street sweeping, grocery distribution, mail delivery, etc. The major contribution of this part is the development of a population-based hybrid meta-heuristic in which a set of local search procedures and neighborhood-based meta-heuristics cooperate with the genetic algorithm population evolution mechanism to enhance the solution quality as well as to promote diversity of the genetic algorithm population. The results show that the proposed methodology is highly competitive, providing new best solutions in some large instances.
The second part of the dissertation aims to present, model and solve two rich vehicle routing problems which further extend the VRPTW with time-dependent demands of pickup and delivery, and hard time synchronization restrictions. They are called Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS), respectively. These two problems originate from planning the operations of two-tiered City Logistics systems. The difficulty of these problems lies in handling two intertwined sets of decisions: the routing component which aims to determine the sequences of customers visited by each vehicle, and the scheduling component which consists in planning arrivals of vehicles at facilities within hard time synchronization restrictions. Previously, these issues have been addressed separately. Combining these decisions into one formulation and solution method should yield better results. In this dissertation we propose meta-heuristics that address the two decisions simultaneously, in a comprehensive and efficient way. Experiments confirm the good performance of the proposed methodology compared to the literature, providing system managers with solution requiring less vehicles and travel costs to perform efficiently the same amount of work. In the context of City Logistics systems, our results indicate a reduction in the presence of vehicles on the streets of the city and, thus, in their negative impact on congestion and environment.
|
Page generated in 0.0548 seconds