Spelling suggestions: "subject:"etabolic engineering"" "subject:"ametabolic engineering""
81 |
Metabolic Studies of Albomycin BiosynthesisKulkarni, Aditya S. January 2015 (has links)
No description available.
|
82 |
Enhanced butyric acid fermentation by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactorZhu, Ying 29 January 2003 (has links)
No description available.
|
83 |
Understanding and Engineering Chemically Activated Ubiquitin Ligases for High-throughput Detection, Quantification, and Control of Molecules in YeastChaisupa, Patarasuda 10 June 2024 (has links)
Fungi, diverse and impactful organisms, exert both beneficial and harmful effects on plants, animals, and humans. Certain fungi produce auxin or indole-3-acetic acid (IAA), a crucial plant growth hormone that influences various aspects of plant growth and defense mechanisms. Conversely, pathogenic fungi can produce auxin and manipulate auxin signaling in their host plant to promote fungal virulence and infection progression.
Targeting the auxin signaling pathway in pathogenic fungi offers a novel strategy for combating fungal infections in both plants and humans. Nevertheless, the auxin biosynthesis pathway and the role of auxin in fungal symbioses is not fully understood, in part, due to the lack of a tool for measuring intracellular auxin with high spatial and temporal resolution. This dissertation presents the first genetically encoded biosensor engineered from the E3 ubiquitin ligase to detect and quantify intracellular auxin in a Saccharomyces cerevisiae model. The biosensor has been applied to begin studying auxin metabolism and biosynthesis in yeast as well as better understand the plant auxin co-receptor proteins from which it is built. Additionally, the biosensor is re-engineered for application in inducible protein degradation, controlled by auxin. This tool could be applied to identify novel protein targets for disrupting pathogenic fungal species. Overall, this research offers valuable tool and platform for studying auxin biosynthesis pathway, plant protein and auxin signaling as well as intracellular proteins in fungi. / Doctor of Philosophy / Fungi affect plants, animals, and humans, in both beneficial and harmful ways. Some fungi aid other organisms, while others cause illness. Certain fungi produce a hormone called auxin, or indole-3-acetic acid (IAA), which is essential for plant growth and many environmental responses. Auxin can also assist plants in defending against harmful fungi. Conversely, fungi that infect plants can utilize auxin to promote their own growth and spread. Some fungi even produce auxin, possibly aiding in their colonization of plants. In human fungal infection, it is suggested that auxin may be involved in virulent traits and disease progression.
Targeting the auxin signaling pathway in harmful fungi presents an innovative approach to combat fungal infections in both plants and humans. However, our understanding of fungal auxin biosynthesis pathways and their role in fungal infections are not fully understood due to the lack of tools to measure auxin in cells efficiently and accurately. This study introduces the first biological tool, called a biosensor, engineered from auxin responsive proteins from plants, to detect and measure intracellular auxin in Baker's yeast. The biosensor has been used to investigate auxin production by yeast. Additionally, the biosensor has been re-engineered for application in inducible protein degradation, controlled by auxin. This tool could be applied to identify novel protein targets for disrupting pathogenic fungal species. Overall, this research provides useful tool and platform to study auxin production, plant protein function and particular proteins in fungi.
|
84 |
Degenerate oligonucleotide primed amplification of genomic DNA for combinatorial screening libraries and strain enrichmentFreedman, Benjamin Gordon 22 December 2014 (has links)
Combinatorial approaches in metabolic engineering can make use of randomized mutations and/or overexpression of randomized DNA fragments. When DNA fragments are obtained from a common genome or metagenome and packaged into the same expression vector, this is referred to as a DNA library. Generating quality DNA libraries that incorporate broad genetic diversity is challenging, despite the availability of published protocols. In response, a novel, efficient, and reproducible technique for creating DNA libraries was created in this research based on whole genome amplification using degenerate oligonucleotide primed PCR (DOP-PCR). The approach can produce DNA libraries from nanograms of a template genome or the metagenome of multiple microbial populations. The DOP-PCR primers contain random bases, and thermodynamics of hairpin formation was used to design primers capable of binding randomly to template DNA for amplification with minimal bias. Next-generation high-throughput sequencing was used to determine the design is capable of amplifying up to 98% of template genomic DNA and consistently out-performed other DOP-PCR primers.
Application of these new DOP-PCR amplified DNA libraries was demonstrated in multiple strain enrichments to isolate genetic library fragments capable of (i) increasing tolerance of E. coli ER2256 to toxic levels of 1-butanol by doubling the growth rate of the culture, (ii) redirecting metabolism to ethanol and pyruvate production (over 250% increase in yield) in Clostridium cellulolyticum when consuming cellobiose, and (iii) enhancing L-arginine production when used in conjunction with a new synthetic gene circuit. / Ph. D.
|
85 |
Toward developing pheromone emitting trap crops: Metabolic engineering of an aggregation pheromone for enhanced attraction of Phyllotreta cruciferaeLeBlanc, Sophie M. 08 September 2021 (has links)
Pheromone lures and trap crops are appealing pest management tools that use insect and/or plant volatiles to reduce pest populations on crops of interest. Generating pheromone-emitting trap plants may allow for a continuing and highly-specific attraction of insect pests without repeated and costly application of synthetic pheromones. These trap plants may also be used to develop area-wide pest management strategies. As a proof-of-principle study we tested the possibility of producing the pheromone of the crucifer flea beetle Phyllotreta cruciferae in transgenic plants. P. cruciferae is an important pest of Brassica crops. In the presence of a host plant, males emit an aggregation pheromone, which attracts both males and females. Himachaladiene, a sesquiterpene, has been identified as a key component of the aggregation pheromone of P. cruciferae. In a close relative, Phyllotreta striolata, the compound is synthesized by a two-step pathway with an isoprenyl diphosphate synthase (PsIDS3) making (Z,E)-farnesyl diphosphate (FPP), which is converted by a terpene synthase (PsTPS1) to himachaladiene. Transient transformation of N. benthamiana with PsIDS3-TPS1 co-localized to the plastid resulted in the emission of himachaladiene and other known PsTPS1 products. Daily emissions of himachaladiene were approximately 1 µg per plant, which is six-fold higher than emissions from individual male flea beetles. Stable transformation of Arabidopsis thaliana with the same vector construct resulted in transgenic plants that expressed PsTPS1 and PsIDS3 transcripts, but no himachaladiene or other PsTPS1 products were present in volatile collections or leaf extracts of these plants. Moreover, no PsTPS1 enzyme activity was observed, indicating that post-transcriptional/translational effects prevent proper expression or targeting of functional PsIDS3 and/or PsTPS1 proteins in A. thaliana. Overall, this study demonstrates that the key component of the P. cruciferae aggregation pheromone, himachaladiene, can be transiently produced and emitted in a plant system at rates that are biologically relevant for insect attraction. However, further work is required for the stable production of the pheromone in plants. In addition, preliminary results are presented for the development of simple two-choice arenas that may allow for assessment of the movement of beetles toward host plant leaf tissue. This work can inform future efforts in developing methods for the economic production of himachaladiene in a plant system or the establishment of transgenic plants for the production and deployment of himachaladiene in a field setting. / Master of Science / The crucifer flea beetle is an important pest of vegetable and oilseed Brassica crops such as broccoli, cabbage and canola. Feeding by beetles has its greatest impact on crop health and yield in the early spring, when adult beetles emerge from overwintering sites and feed on newly- emerging Brassica seedlings. Currently these insects are controlled using broad spectrum insecticides. A general awareness of the negative aspects of insecticides drives the search for alternative pest management strategies that could diversify our management strategies and reduce reliance on insecticides. Previous work has found that the crucifer flea beetle navigates to its host plants, in part, through plant-emitted volatiles. After locating the plant host, males emit a volatile aggregation pheromone that when blended with host plant volatiles increases attraction. Here work towards the development of a specialized trap crop is presented. Plants were engineered to emit a key component of the crucifer flea beetle aggregation pheromone. In an engineered non-host plant, Nicotiana benthamiana, transient production of the aggregation pheromone was established. However, in an engineered Brassica plant, Arabidopsis thaliana, no aggregation pheromone was detected despite evidence of the presence and expression of the required biosynthetic genes for its production. A discussion on alternative engineering strategies for A. thaliana is presented. In addition, preliminary results are presented for the development of a simple behavior assay to assess the attraction of beetles toward different smells. This work can inform future efforts aimed at developing methods for the economic production of the aggregation pheromone in a plant system or the establishment of plants for the production and deployment of the aggregation pheromone in a field setting.
|
86 |
Development of CRISPR-based programmable transcriptional regulators and their applications in plantsSelma García, Sara 01 September 2022 (has links)
[ES] La Biología Sintética de Plantas tiene como objetivo rediseñar las plantas para que adquieran características y funcionalidades novedosas a través de circuitos reguladores ortogonales. Para lograr este objetivo, se deben desarrollar nuevas herramientas moleculares con la capacidad de interactuar con factores endógenos de manera potente y específica. CRISPR/Cas9 surgió como una herramienta prometedora que combina la capacidad personalizable de unión al DNA, a través de la versión catalíticamente inactivada de la proteína Cas9 (dCas9), con la posibilidad de anclar dominios autónomos de activación transcripcional (TADs) a su estructura para lograr una regulación específica de la expresión génica. Los activadores transcripcionales programables (PTAs) pueden actuar como procesadores específicos, ortogonales y versátiles para el desarrollo de nuevos circuitos genéticos en las plantas. En busca de dCas9-PTA optimizados, se llevó a cabo una evaluación combinatoria de diferentes arquitecturas dCas9 con un catálogo de varios TAD. La mejor herramienta resultante de esta comparación, denominada dCasEV2.1, se basa en la estrategia scRNA y la combinación de los dominios de activación EDLL y VPR con un bucle multiplexable gRNA2.1, que es una versión mutada del gRNA2.0 descrito previamente. En este trabajo, el activador programable dCasEV2.1 demostró ser una herramienta potente y específica, logrando tasas de activación más altas que otras estrategias dCas9 disponibles en plantas. Se observaron tasas de activación sin precedentes dirigidas a genes endógenos en N. benthamiana, acompañadas de una estricta especificidad en todo el genoma, lo que hace que esta herramienta sea adecuada para la regulación estricta de redes reguladoras complejas. Como prueba de concepto, se diseñaron cuatro programas de activación para distintas ramas de la ruta de los flavonoides, buscando obtener enriquecimientos metabólicos específicos en hojas de N. benthamiana. El análisis metabólico de las hojas metabólicamente reprogramadas mediante dCasEV2.1 reveló un enriquecimiento selectivo de los metabolitos diana y sus derivados glicosilados, que se correlacionaron con el programa de activación empleado. Estos resultados demuestran que dCasEV2.1 es una herramienta eficaz para la ingeniería metabólica y un componente clave en los circuitos genéticos destinados a reprogramar los flujos metabólicos. Finalmente, basándonos en dCasEV2.1, desarrollamos un sistema optimizado de regulación de genes inducidos por virus (VIGR) que utiliza un vector Potato Virus X (PVX) para el suministro de los programas de activación CRISPR codificados con gRNA. Este enfoque permite controlar el transcriptoma de la planta a través de una aplicación sistémica basada en aerosol de componentes CRISPR a plantas adultas. El nuevo sistema PVX-VIGR produjo una fuerte activación transcripcional en varios genes diana endógenos, incluidos tres factores de transcripción MYB-like seleccionados. Las activaciones específicas de MYB condujeron a perfiles metabólicos distintivos, demostrando que las aplicaciones potenciales de la herramienta dCasEV2.1 en plantas incluyen la obtención de perfiles metabólicos personalizados utilizando un suministro basado en aerosol de instrucciones de reprogramación transcripcional codificadas por gRNA. En resumen, esta tesis proporciona herramientas novedosas para la activación transcripcional fuerte, ortogonal y programable en plantas, con una caja de herramientas ampliada para el suministro de los programas de activación. / [CA] La Biologia Sintètica de Plantes té com objectiu redissenyar les plantes per que obtinguen característiques i funcionalitats innovadores mitjançant circuits reguladors ortogonals. Per arribar a aquest objectiu, s'han de desenvolupar noves ferramentes moleculars amb la capacitat d'interactuar amb factor endògens d'una manera potent i específica. CRISPR/Cas9 va sorgir com una ferramenta prometedora que combina la capacitat personalitzable d'unió al DNA, mitjançant la versió catalíticament inactivada de la proteïna Cas9 (dCas9), amb la possibilitat de fixar dominis autònoms de activació transcripcional (TADs) a la seua estructura per aconseguir una regulació específica de la expressió gènica. Els activadors transcripcionals programables (PTAs) poden actuar com a processadors específics, ortogonals i versàtils per al desenvolupament de nous circuits genètics a les plantes. Buscant dCas9-PTA optimitzats, es va realitzar una avaluació combinatòria de distintes arquitectures dCas9 amb un catàleg de diversos TAD. La millor ferramenta segons aquesta comparació, anomenada dCasEV2.1, es basa en la estratègia scRNA i la combinació del dominis d'activació EDLL i VPR amb un bucle multiplexable gRNA2.1, que es una versió mutada del gRNA2.0 descrit prèviament. En aquest treball, el activador programable dCasEV2.1 es va mostrar com una ferramenta potent i específica, aconseguint nivells d'activació majors que altes estratègies dCas9 disponibles en plantes. Es van observar taxes d'activació sense precedents dirigides a gens endògens en N. benthamiana, junt a una estricta especificitat en tot el genoma, indicant que aquesta ferramenta és adequada per a la regulació estricta de xarxes reguladores complexes. Como proba de concepte, se van dissenyar quatre programes d'activació per a diferent branques de la ruta dels flavonoides, cercant obtenir enriquiments metabòlics específics en fulles de N. benthamiana. L'anàlisi metabòlic de les fulles metabòlicament reprogramades mitjançant dCasEV2.1 va revelar un enriquiment selectiu del metabòlits diana i els seus derivats glicosilats que es correlacionen amb el programa d'activació emprat. Aquests resultats demostren que dCasEV2.1 és una ferramenta eficaç per a l'enginyeria metabòlica i un component clau als circuits genètics destinats a reprogramar els fluxos metabòlics. Finalment, en base a dCasEV2.1, desenvoluparem un sistema optimitzat de regulació de gens induïts per virus (VIGR) que utilitza un vector Potato Virus X (PVX) per al subministrament dels programes d'activació CRISPR codificats amb gRNA. Aquesta aproximació permet controlar el transcriptoma de la planta mitjançant l'aplicació sistèmica basada en aerosol de components CRISPR a plantes adultes. El nou sistema PVX-VIGR va produir una gran activació transcripcional en diversos gens diana endògens, inclosos tres factors de transcripció MYB-like seleccionats prèviament. Les activacions específiques de MYB conduïren a perfils metabòlics distintius, demostrant que les aplicacions potencials de la ferramenta dCasEV2.1 en plantes inclouen la obtenció de perfils metabòlics personalitzats emprant un subministrament basat en aerosol de instruccions de reprogramació transcripcional codificades per gRNA. En resum, aquesta tesis proporciona noves ferramentes per a l'activació transcripcional forta, ortogonal i programable en plantes, amb una caixa de ferramentes eixamplada per al subministraments dels programes d'activació. / [EN] Plant Synthetic Biology aims to redesign plants to acquire novel traits and functionalities through orthogonal regulatory circuits. To achieve this goal, new molecular tools with the capacity of interacting with endogenous factors in a potent and specific manner must be developed. CRISPR/Cas9 emerged as promising tools which combine a customizable DNA-binding activity through the catalytically inactivated version of Cas9 protein (dCas9) with the possibility to anchor autonomous transcriptional activation domains (TADs) to its structure to achieve a specific regulation of the gene expression. The Programmable Transcriptional Activators (PTAs) could act as specific, orthogonal and versatile processor components in the development of new genetic circuits in plants. In search for optimized dCas9-PTAs, a combinatorial evaluation of different dCas9 architectures with a catalogue of various TADs was performed. The best resulting tool of this comparison, named dCasEV2.1, is based on the scRNA strategy and the combination of EDLL and VPR activation domains with a multiplexable gRNA2.1 loop, which is a mutated version of the previously described gRNA2.0. In this work, the dCasEV2.1 programable activator was proved to be a strong and specific tool, achieving higher activation rates than other available dCas9 strategies in plants. Unprecedented activation rates were observed targeting endogenous genes in N. benthamiana, accompanied by strict genome-wide specificity that makes this tool suitable to perform a tight regulation of complex regulatory networks. As a proof of concept, a design of four activation programs to activate different branches of the flavonoid pathway and obtain specific metabolic enrichments in N. benthamiana leaves was performed. The metabolic analysis on the dCasEV2.1 metabolically reprogrammed leaves revealed a selective enrichment of the targeted metabolites and their glycosylated derivatives that correlated with the activation program employed. These results demonstrate that dCasEV2.1 is a powerful tool for metabolic engineering and a key component in genetic circuits aimed at reprogramming metabolic fluxes. Finally, based on dCasEV2.1, we developed an optimized Viral Induced Gene Regulation (VIGR) system that makes use of a Potato Virus X (PVX) vector for the delivery of the gRNA-encoded CRISPR activation programs. This approach offers a way to control the plant transcriptome through a spray-based systemic delivery of CRISPR components to adult plants. The new PVX-VIGR system led to strong transcriptional activation in several endogenous target genes, including three selected MYB-like transcription factors. Specific MYB activations lead to distinctive metabolic profiles, showing that the potential applications of the dCasEV2.1 tool in plants include the obtention of custom metabolic profiles using a spray-based delivery of gRNA-encoded transcriptional reprogramming instructions. In sum, this thesis provides novel tools for strong, orthogonal and programmable transcriptional activation in plants, with an expanded toolbox for the delivery of the activation programs. / Selma García, S. (2022). Development of CRISPR-based programmable transcriptional regulators and their applications in plants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185046
|
87 |
Metabolic engineering of plants using a disarmed potyvirus vectorMajer, Eszter 01 September 2016 (has links)
Tesis por compendio / [EN] Plant viruses are obligate intracellular parasites which were used to develop recombinant plant virus vectors to express heterologous proteins and to modify endogenous metabolic pathways of natural products in plants. The main limitation of many plant virus-based systems is the difficulty to co-express various heterologous proteins in the same cell with proper subcellular localization, which is a crucial question in metabolic engineering. This work provides a solution to overcome this problem by using a potyvirus-based vector system. Potyviruses (genus Potyvirus, family Potyviridae) are plus-strand single-stranded RNA viruses, which have a genome expression strategy that allows the equimolar production of most viral proteins. On the basis of an infectious clone of Tobacco etch virus (TEV), Bedoya et al. (2010) developed an expression system in which the RNA-dependent RNA polymerase (NIb) gene was replaced by an expression cassette, harboring several heterologous proteins. This viral vector was able to express three fluorescent proteins with nucleocytoplasmic localization in equimolar amounts in transgenic tobacco plants in which NIb was supplemented in trans. Despite of the apparent simplicity of potyvirus genome expression strategy, foreign cDNA insertion is a complicated task. Thus, our first goal was to analyze the effect of gene insertion on TEV genome stability. As a result of this work, a novel insertion position was discovered at the amino-terminal end of the potyvirus polyprotein, which opened the possibility to explore new questions of recombinant protein expression. Since metabolic pathways are highly compartmentalized, proper subcellular targeting of enzymes is an essential task. Thus, our second objective centralized on the subcellular targeting of expressed proteins from the TEV-based viral vector. cDNAs coding for the green fluorescent protein (GFP) fused to chloroplast, nucleus and mitochondria targeting signal sequences were inserted into the newly described amino-terminal insertion position or into an internal site, replacing the NIb cistron. Our results showed that for protein delivery to chloroplasts and mitochondria, foreign genes have to be inserted at the amino-terminal site of the viral vector, but for nuclear delivery, both insertion positions are suitable. The last objective of this work was to investigate whether the potyvirus-based vector was able to express an entire heterologous multistep biosynthetic pathway in plant cells. For this aim we purposed to produce lycopene, a plant pigment with health promoting properties. To do so, we inserted cDNAs coding for the enzymes of a three-step metabolic pathway of bacterial origin into the potyvirus-based vector. Infected tobacco plants developed orange symptoms indicating lycopene accumulation, which was confirmed by high-performance liquid chromatography analysis and microscopy observations. Our results also illustrated that the sole expression of Pantoea ananatis phytoene synthase, crtB, is enough to induce carotenoid accumulation, conferring yellow coloration to the infected tissue and serves as reporter system to visually track viral infection in several plant species. / [ES] Los virus de plantas son parásitos intracelulares obligados que han sido utilizados para desarrollar vectores virales y expresar proteínas heterólogas y modificar rutas metabólicas endógenas de productos naturales. La principal limitación de muchos sistemas basados en virus de plantas es la dificultad de coexpresar diversas proteínas heterólogas en la misma célula con la localización subcelular apropiada, lo cual es una cuestión crucial en ingeniería metabólica. Este trabajo presenta una solución para superar este problema mediante el uso de un vector viral basado en un potyvirus. Los potyvirus (género Potyvirus, familia Potyviridae) son virus de RNA de cadena positiva simple que tienen una estrategia de expresión génica que permite la producción de la mayoría de las proteínas virales en cantidades equimolares. Basado en un clon infeccioso del virus del grabado del tabaco (Tobacco etch virus, TEV) Bedoya et al. (2010) desarrollaron un sistema de expresión en el que el gen de la RNA polimerasa dependiente de RNA (NIb) fue sustituido por un casete de expresión, que albergaba varias proteínas heterólogas. Este vector viral fue capaz de expresar tres proteínas fluorescentes con localización nucleocitoplásmica en cantidades equimolares en plantas de tabaco transgénicas que complementaban el cistron NIb en trans. A pesar de la aparente simplicidad de la estrategia de expresión génica de los potyvirus, la inserción de un cDNA foráneo es una tarea complicada. Por lo tanto, nuestro primer objetivo fue analizar el efecto de la inserción en la estabilidad del genoma de TEV. Como resultado de este trabajo, descubrimos una nueva posición de inserción en el extremo amino-terminal de la poliproteína viral que nos permitió explorar otras cuestiones sobre la expresión de proteínas recombinantes. Dado que las vías metabólicas son muy compartimentalizadas, la adecuada localización subcelular de enzimas es una tarea esencial en ingeniería metabólica. Por eso, nuestro segundo objetivo se centró en la distribución de las proteínas heterológas expresadas con el vector viral a diferentes orgánulos subcelulares. cDNAs que codificaban la proteína fluorescente verde (green fluorescent protein, GFP) fusionada a péptidos señal se insertaron en la nueva posición amino-terminal y en un sitio interno, sustituyendo el cistrón NIb, para enviarla al cloroplasto, núcleo y a la mitocondria. Nuestros resultados mostraron que para la distribución de proteínas al cloroplasto y mitocondria, los genes foráneos deben ser insertados en el sitio amino-terminal del vector viral, pero para la distribución nuclear, ambas posiciones son adecuadas. El último objetivo de este trabajo fue estudiar si el vector viral basado en potyvirus es capaz de expresar una ruta biosíntética de múltiples pasos en células vegetales. Para ello nos propusimos producir licopeno, un pigmento vegetal con propiedades beneficiosas para la salud humana. Para ello, insertamos un cDNA que codificaba las enzimas de una ruta metabólica de tres pasos de origen bacteriano en el vector viral. Las plantas de tabaco infectadas con el vector viral desarrollaron síntomas de color naranja indicando la acumulación de licopeno, que fue confirmado por análisis de cromatografía líquida de alta eficacia y observaciones de microscopía. Nuestros resultados también ilustraron que la sola expresión de la fitoeno sintasa de Pantonea ananatis, crtB, es suficiente para inducir la acumulación de carotenoides que confieren una coloración amarilla al tejido infectado y sirve como sistema reportero visual en varias especies de plantas. / [CA] Els virus de plantes són paràsits intracel·lulars obligats que han estat utilitzats per a desenvolupar vectors virals i expressar proteïnes heteròlogues y modificar rutes metabòliques endògenes de productes naturals silenciant certs gens o expressant factors de transcripció i enzims metabòlics. La principal limitació de molts sistemes basats en virus de plantes és la dificultat de coexpressar diverses proteïnes heteròlogues en la mateixa cèl·lula amb la localització subcel·lular apropiada, cosa que és una qüestió crucial en enginyeria metabòlica. Aquest treball presenta una solució per a superar aquest problema mitjançant l'ús d'un vector viral basat en un potyvirus. Els potyvirus (gènere Potyvirus, família Potyviridae) són virus d'RNA de cadena positiva simple que tenen una estratègia d'expressió gènica que permet la producció de la majoria de les proteïnes virals en quantitats equimolars. Basat en un clon infecciós del virus del gravat del tabac (Tobacco etch virus, TEV) Bedoya et al. (2010) van desenvolupar un sistema d'expressió en el qual el gen de l'RNA polimerasa depenent d'RNA (NIb) va ser substituït per un casset d'expressió, que albergava diverses proteïnes heteròlogues. Aquest vector viral va ser capaç d'expressar tres proteïnes fluorescents amb localització nucleocitoplàsmica en quantitats equimolars en plantes de tabac transgèniques que complementaven el cistró NIb en trans. Malgrat l'aparent simplicitat de l'estratègia d'expressió gènica dels potyvirus, la inserció d'un cDNA forà és una tasca complicada. Per tant, el nostre primer objectiu va ser analitzar l'efecte de la inserció en l'estabilitat del genoma de TEV. Com a resultat d'aquest treball, hem descobert una nova posició d'inserció en l'extrem amino terminal de la poliproteïna viral que ens va permetre explorar altres qüestions sobre l'expressió de proteïnes recombinants. Atès que les vies metabòliques són molt compartimentalitzades, l'adequada localització subcel·lular d'enzims és una tasca essencial en enginyeria metabòlica. Per açò, el nostre segon objectiu es va centrar en la distribució de les proteïnes heteròlogues expressades amb el vector viral a diferents orgànuls subcelul·lars. cDNAs que codificaven la proteïna fluorescent verda (green fluorescent protein, GFP) fusionada a pèptids senyal es van inserir en la nova posició amino terminal i en un lloc intern, substituint el cistró NIb, per a enviar-la al cloroplast, nucli i al mitocondri. Els nostres resultats van mostrar que per a la distribució de proteïnes al cloroplast i mitocondri, els gens forans han de ser inserits en el lloc amino terminal del vector viral, però per a la distribució nuclear, ambdues posicions són adequades. El lloc amino terminal va resultar ser més adequat per a produir quantitats més grans de proteïnes recombinants, però el lloc d'inserció intern va demostrar ser més estable. Sobre la base d'aquests resultats, hem sigut capaços de distribuir dues proteïnes fluorescents diferents als cloroplasts i nuclis des d'un únic vector viral. L'últim objectiu d'aquest treball va ser estudiar si el vector viral basat en potyvirus és capaç d'expressar una ruta biosintètica de múltiples passos en cèl·lules vegetals. Per açò ens vam proposar produir licopè, un pigment vegetal amb propietats beneficioses per a la salut humana. Per això inserírem un cDNA que codificaba els tres enzims de una ruta metabòlica de tres passos d'origen bacterià en el vector viral. Les plantes de tabac infectades amb el vector viral van desenvolupar símptomes de color taronja indicant l'acumulació de licopè, que va ser confirmat per anàlisi de cromatografia líquida d'alta eficàcia i observacions de microscòpia. Els nostres resultats també van il·lustrar que la sola expressió de fitoè sintasa de Pantonea ananatis, crtB, és suficient per a induir l'acumulació de carotenoides que confereixen una colora / Majer, E. (2016). Metabolic engineering of plants using a disarmed potyvirus vector [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68477 / Compendio
|
88 |
DESIGN OF GENETIC ELEMENTS AND SOFTWARE TOOLS FOR PLANT SYNTHETIC BIOLOGYVázquez Vilar, Marta 01 September 2016 (has links)
Tesis por compendio / [EN] Synthetic Biology is an emerging interdisciplinary field that aims to apply the engineering principles of modularity, abstraction and standardization to genetic engineering. The nascent branch of Synthetic Biology devoted to plants, Plant Synthetic Biology (PSB), offers new breeding possibilities for crops, potentially leading to enhanced resistance, higher yield, or increased nutritional quality. To this end, the molecular tools in the PSB toolbox need to be adapted accordingly, to become modular, standardized and more precise. Thus, the overall objective of this Thesis was to adapt, expand and refine DNA assembly tools for PSB to enable the incorporation of functional specifications to the description of standard genetic elements (phytobricks) and to facilitate the construction of increasingly complex and precise multigenic devices, including genome editing tools.
The starting point of this Thesis was the modular DNA assembly method known as GoldenBraid (GB), based on type IIS restriction enzymes. To further optimize the GB construct-making process and to better catalog the phytobricks collection, a database and a set of software-tools were developed as described in Chapter 1. The final webbased software package, released as GB2.0, was made publicly available at www.gbcloning.upv.es. A detailed description of the functioning of GB2.0, exemplified with the building of a multigene construct for anthocyanin overproduction was also provided in Chapter 1. As the number and complexity of GB constructs increased, the next step forward consisted in the refinement of the standards with the incorporation of experimental information associated to each genetic element (described in Chapter 2). To this end, the GB package was reshaped into an improved version (GB3.0), which is a self-contained, fully traceable assembly system where the experimental data describing the functionality of each DNA element is displayed in the form of a standard datasheet. The utility of the technical specifications to anticipate the behavior of composite devices was exemplified with the combination of a chemical switch with a prototype of an anthocyanin overproduction module equivalent to the one described in Chapter 1, resulting in a dexamethasone-responsive anthocyanin device. Furthermore, Chapter 3 describes the adaptation and functional characterization of CRISPR/Cas9 genome engineering tools to the GB technology. The performance of the adapted tools for gene editing, transcriptional activation and repression was successfully validated by transient expression in N. benthamiana. Finally, Chapter 4 presents a practical implementation of GB technology for precision plant breeding. An intragenic construct comprising an intragenic selectable marker and a master regulator of the flavonoid biosynthesis was stably transformed in tomato resulting in fruits enhanced in flavonol content.
All together, this Thesis shows the implementation of increasingly complex and precise genetic designs in plants using standard elements and modular tools following the principles of Synthetic Biology. / [ES] La Biología Sintética es un campo emergente de carácter interdisciplinar que se fundamenta en la aplicación de los principios ingenieriles de modularidad, abstracción y estandarización a la ingeniería genética. Una nueva vertiente de la Biología Sintética aplicada a las plantas, la Biología Sintética Vegetal (BSV), ofrece nuevas posibilidades de mejora de cultivos que podrían llevar a una mejora de la resistencia, a una mayor productividad, o a un aumento de la calidad nutricional. Sin embargo, para alcanzar este fin las herramientas moleculares disponibles en estos momentos para BSV deben ser adaptadas para convertirse en modulares, estándares y más precisas. Por ello se planteó como objetivo general de esta Tesis adaptar, expandir y refinar las herramientas de ensamblaje de DNA de la BSV para permitir la incorporación de especificaciones funcionales en la descripción de elementos genéticos estándar (fitobricks) y facilitar la construcción de estructuras multigénicas cada vez más complejas y precisas, incluyendo herramientas de editado genético.
El punto de partida de esta Tesis fue el método de ensamblaje modular de ADN GoldenBraid (GB) basado en enzimas de restricción tipo IIS. Para optimizar el proceso de ensamblaje y catalogar la colección de fitobricks generados se desarrollaron una base de datos y un conjunto de herramientas software, tal y como se describe en el Capítulo 1. El paquete final de software se presentó en formato web como GB2.0, haciéndolo accesible al público a través de www.gbcloning.upv.es. El Capítulo 1 también proporciona una descripción detallada del funcionamiento de GB2.0 ejemplificando su uso con el ensamblaje de una construcción multigénica para la producción de antocianinas. Con el aumento en número y complejidad de las construcciones GB, el siguiente paso necesario fue el refinamiento de los estándar con la incorporación de la información experimental asociada a cada elemento genético (se describe en el Capítulo 2). Para este fin, el paquete de software de GB se reformuló en una nueva versión (GB3.0), un sistema de ensamblaje auto-contenido y completamente trazable en el que los datos experimentales que describen la funcionalidad de cada elemento genético se muestran en forma de una hoja de datos estándar. La utilidad de las especificaciones técnicas para anticipar el comportamiento de dispositivos biológicos compuestos se ejemplificó con la combinación de un interruptor químico y un prototipo de un módulo de sobreproducción de antocianinas equivalente al descrito en el Capítulo 1, resultando en un dispositivo de producción de antocianinas con respuesta a dexametasona. Además, en el Capítulo 3 se describe la adaptación a la tecnología GB de las herramientas de ingeniería genética CRISPR/Cas9, así como su caracterización funcional. La funcionalidad de estas herramientas para editado génico y activación y represión transcripcional se validó con el sistema de expresión transitoria en N.benthamiana. Finalmente, el Capítulo 4 presenta una implementación práctica del uso de la tecnología GB para hacer mejora vegetal de manera precisa. La transformación estable en tomate de una construcción intragénica que comprendía un marcador de selección intragénico y un regulador de la biosíntesis de flavonoides resultó en frutos con un mayor contenido de flavonoles.
En conjunto, esta Tesis muestra la implementación de diseños genéticos cada vez más complejos y precisos en plantas utilizando elementos estándar y herramientas modulares siguiendo los principios de la Biología Sintética. / [CA] La Biologia Sintètica és un camp emergent de caràcter interdisciplinar que es fonamenta amb l'aplicació a la enginyeria genètica dels principis de modularitat, abstracció i estandarització. Una nova vessant de la Biologia Sintètica aplicada a les plantes, la Biologia Sintètica Vegetal (BSV), ofereix noves possibilitats de millora de cultius que podrien portar a una millora de la resistència, a una major productivitat, o a un augment de la qualitat nutricional. Tanmateix, per poder arribar a este fi les eines moleculars disponibles en estos moments per a la BSV han d'adaptar-se per convertir-se en modulars, estàndards i més precises. Per això es plantejà com objectiu general d'aquesta Tesi adaptar, expandir i refinar les eines d'ensamblatge d'ADN de la BSV per permetre la incorporació d'especificacions funcionals en la descripció d'elements genètics estàndards (fitobricks) i facilitar la construcció d'estructures multigèniques cada vegada més complexes i precises, incloent eines d'edidat genètic.
El punt de partida d'aquesta Tesi fou el mètode d'ensamblatge d'ADN modular GoldenBraid (GB) basat en enzims de restricció tipo IIS. Per optimitzar el proces d'ensamblatge i catalogar la col.lecció de fitobricks generats es desenvolupà una base de dades i un conjunt d'eines software, tal i com es descriu al Capítol 1. El paquet final de software es presentà en format web com GB2.0, fent-se accessible al públic mitjançant la pàgina web www.gbcloning.upv.es. El Capítol 1 també proporciona una descripció detallada del funcionament de GB2.0, exemplificant el seu ús amb l'ensamblatge d'una construcció multigènica per a la producció d'antocians. Amb l'augment en nombre i complexitat de les construccions GB, el següent pas fou el refinament dels estàndards amb la incorporació de la informació experimental associada a cada element genètic (es descriu en el Capítol 2). Per a aquest fi, el paquet de software de GB es reformulà amb una nova versió anomenada GB3.0. Aquesta versió consisteix en un sistema d'ensamblatge auto-contingut i complemtament traçable on les dades experimentals que descriuen la funcionalitat de cada element genètic es mostren en forma de fulla de dades estàndard. La utilitat de les especificacions tècniques per anticipar el comportament de dispositius biològics compostos s'exemplificà amb la combinació de un interruptor químic i un prototip d'un mòdul de sobreproducció d'antocians equivalent al descrit al Capítol 1. Aquesta combinació va tindre com a resultat un dispositiu de producció d'antocians que respón a dexametasona. A més a més, al Capítol 3 es descriu l'adaptació a la tecnologia GB de les eines d'enginyeria genètica CRISPR/Cas9, així com la seua caracterització funcional. La funcionalitat d'aquestes eines per a l'editat gènic i activació i repressió transcripcional es validà amb el sistema d'expressió transitòria en N. benthamiana. Finalment, al Capítol 4 es presenta una implementació pràctica de l'ús de la tecnologia GB per fer millora vegetal de mode precís. La transformació estable en tomaca d'una construcció intragènica que comprén un marcador de selecció intragènic i un regulador de la biosíntesi de flavonoïdes resultà en plantes de tomaca amb un major contingut de flavonols en llur fruits.
En conjunt, esta Tesi mostra la implementació de dissenys genètics cada vegada més complexos i precisos en plantes utilitzant elements estàndards i eines modulars seguint els principis de la Biologia Sintètica. / Vázquez Vilar, M. (2016). DESIGN OF GENETIC ELEMENTS AND SOFTWARE TOOLS FOR PLANT SYNTHETIC BIOLOGY [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68483 / Premios Extraordinarios de tesis doctorales / Compendio
|
89 |
Characterization of capsaicinoid production in recombinant Saccharomyces cerevisiaeLentmaier, Claudia January 2018 (has links)
Kapsaicinoider är ämnen som finns i chilifrukterna och har på senaste tiden fått intresse som läkemedel på grund av sina analgetiska, anti-inflammatoriska och anti-cancer egenskaper. Ett nytt tillvägagångssätt att producera kapsaicinoider kan vara syntesen i rekombinant Saccharomyces cerevisiae med hjälp av metabolisk engineering och rekombinant DNA-tekniker. Gener från Capsicum chinensis, som kodar för enzymerna capsaicinoid-syntas (CS) och acyl-CoA-syntas (ACS), integrerades i S. cerevisiae i tidigare projekt. Den kända laboratoriesträngen CEN.PK modifierades med plasmidtransformation och för vildtyp-stammen ERF 5273 användes den nya CRISPR/Cas9-tekniken. Syftet med detta projekt är att ytterligare karakterisera och jämföra dessa tidigare konstruerade stammar angående deras förmåga att producera nonivamid eller andra jästspecifika kapsaicinoider. Vidare undersöks huruvida kapsaicinoider utsöndras i odlings-medium eller om de ackumuleras intracellulärt. Stammarna odlades i en bioreaktor i lite laboratorieskala. Som odlingsmedium används ett definierat medium med eller utan tillsatser. Odlings-medium kompletterades med vanillyl-amin och nonanoic acid som precursor. För att identifiera de kapsaicinoid-producerande stammarna extraherades supernatanten och cellpelleten och analyserades kromatografisk med HPLC. Resultaten från denna studie visade att jäststammarna, som innehöll båda generna (ACS + CS), sannolikt producerade nonivamid om de odlades i kompletterat medium. Vidare observerades bildning av nonivamid som ackumulerades i själva cellen. Möjligtvis producerades också jästspecifika kapsaicinoider, men topphöjden är nästan inte mätbar. Därför måste dessa resultat bekräftas ytterligare. Framtida arbeten behövs för att säkerställa och förbättra produktionen av kapsaicinoider. Keywords: acyl-CoA syntas, kapsaicinoider, kapsaicinoid syntas, metabolisk engineering, Saccharomyces cerevisiae, nonivamide / Capsaicinoids are compounds found in chili plants and have recently gained interest as pharmaceuticals due to their analgesic, anti-inflammatory and anti-cancer properties. A novel approach producing capsaicinoids could be synthesis in recombinant Saccharomyces cerevisiae with help of metabolic engineering. Genes from Capsicum chinensis, encoding the enzymes capsaicinoid synthase (CS) and acyl-CoA synthase (ACS), were previously inserted into S. cerevisiae. The known laboratory stain CEN.PK was modified with plasmid transformation and the novel CRISPR/Cas9 technology was used for the wild type strain ERF 5273. The aim of this project is to further characterize and compare these previously constructed strains concerning their ability to produce nonivamide or yeast specific capsaicinoids. Furthermore, it is examined whether capsaicinoids are excreted into the broth or accumulated intracellularly. Four different strains were cultivated in bench-scale bioreactors using medium supplemented with or without different precursors (vanillylamine and nonanoic acid). Culture broth supernatants and cell pellets were extracted and analyzed by HPLC in order to identify the capsaicinoid-producing strains. The results from this study revealed that the yeast strains harbouring both genes (ACS+CS) produced most likely nonivamide if they were cultivated in media supplemented with both precursors. Nonivamide formation was equally observed in broth supernatant and cell pellet. Additionally it was shown that yeast specific capsaicinoid production occured, althoug the peak height was close to the limit of detection and these results have to be confirmed further. Future work needs to be done in order to ensure and improve capsaicinoid production. Keywords: acyl-CoA synthase, capsaicinoids, capsaicinoid synthase, metabolic engineering, Saccharomyces cerevisiae, nonivamide.
|
90 |
Model-guided Analysis of Plant Metabolism and Design of Metabolic Engineering StrategiesYen, Jiun Yang 05 April 2017 (has links)
Advances in bioinformatics and computational biology have enabled integration of an enormous amount of known biological interactions. This has enabled researchers to use models and data to design experiments and guide new discovery as well as test for consistency. One such computational method is constraint-based metabolic flux modeling. This is performed using genome-scale metabolic models (GEMs) that are a collection of biochemical reactions, derived from a genome's annotation. This type of flux modeling enables prediction of net metabolite conversion rates (metabolic fluxes) to help understand metabolic activities under specific environmental conditions. It can also be used to derive metabolic engineering strategies that involve genetic manipulations. Over the past decade, GEMs have been constructed for several different microbes, plants, and animal species. Researchers have also developed advanced algorithms to use GEMs to predict genetic modifications for the overproduction of biofuel and valuable commodity chemicals. Many of the predictive algorithms for microbes were validated with experimental results and some have been applied industrially. However, there is much room for improvement. For example, many algorithms lack straight-forward predictions that truly help non-computationally oriented researchers understand the predicted necessary metabolic modifications. Other algorithms are limited to simple genetic manipulations due to computational demands. Utilization of GEMs and flux-based modeling to predict in vivo characteristics of multicellular organisms has also proven to be challenging. Many researchers have created unique frameworks to use plant GEMs to hypothesize complex cellular interactions, such as metabolic adjustments in rice under variable light intensity and in developing tomato fruit. However, few quantitative predictions have been validated experimentally in plants. This research demonstrates the utility of GEMs and flux-based modeling in both metabolic engineering and analysis by tackling the challenges addressed previously with alternative approaches. Here, a novel predictive algorithm, Node-Reward Optimization (NR-Opt) toolbox, was developed. It delivers concise and accurate metabolic engineering designs (i.e. genetic modifications) that can truly improve the efficiency of strain development. As a proof-of-concept, the algorithm was deployed on GEMs of E. coli and Arabidopsis thaliana, and the predicted metabolic engineering strategies were compared with results of well-accepted algorithms and validated with published experimental data. To demonstrate the utility of GEMs and flux-based modeling in analyzing plant metabolism, specifically its response to changes in the signaling pathway, a novel modeling framework and analytical pipeline were developed to simulate changes of growth and starch metabolism in Arabidopsis over multiple stages of development. This novel framework was validated through simulation of growth and starch metabolism of Arabidopsis plants overexpressing sucrose non-fermenting related kinase 1.1 (SnRK1.1). Previous studies suggest that SnRK1.1 may play a critical signaling role in plant development and starch level (a critical carbon source for plant night growth). It has been shown that overexpressing of SnRK1.1 in Arabidopsis can delay vegetative-to-reproductive transition. Many studies on plant development have correlated the delay in developmental transition to reduction in starch turnover at night. To determine whether starch played a role in the delayed developmental transition in SnRK1.1 overexpressor plants, starch turnover was simulated at multiple developmental stages. Simulations predicted no reduction in starch turnover prior to developmental transition. Predicted results were experimentally validated, and the predictions were in close agreement with experimental data. This result further supports previous data that SnRK1.1 may regulate developmental transition in Arabidopsis. This study further validates the utility of GEMs and flux-based modeling in guiding future metabolic research. / Ph. D. / Recent advances in genetic and biochemical studies revealed the incredible complexity of cells, which generated interests in using computers to aid whole cell analyses and design cell engineering strategies to overproduce valuable commodity chemicals, such as biofuel, medicines, polymers, and many industrial materials. In order to use computers to study cells, current knowledge of cellular machinery is converted into mathematical models, such as genome-scale metabolic models. Genome-scale metabolic models are used to simulate the rates of chemical events in cells, which helps researchers predict cellular outputs of interest, such as growth rate and chemical synthesis rates. Combining genome-scale metabolic models with sophisticated computer algorithms, researchers can simulate numerous cell engineering experiments and select a few candidates to test physically, which can reduce cost and research time significantly. This computational technique has been well validated in microorganisms, such as E. coli and yeast; however, the ability to simulate cellular chemistry accurately in plants remains a challenge, which was a goal in my research. In addition, my research also aimed to reduce the inefficiencies in previous cell engineering design algorithms. I was able to develop a novel genome-scale model framework that enabled accurate simulation of plant growth and changes of starch content over time. I also developed a new computer algorithm that could significantly improve the efficiency in designing cell engineering strategies.
|
Page generated in 0.1289 seconds