• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 20
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 122
  • 122
  • 23
  • 22
  • 21
  • 19
  • 17
  • 16
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Methionine auxotrophy in inborn errors of cobalamin metabolism

Kocic, Vesna Garovic January 1992 (has links)
Several of the inborn errors of vitamin B$ sb{12}$ (cobalamin, Cbl) metabolism (cblC, cblD, cblE, cblF, cblG) are associated with homocystinuria and hypomethioninemia due to a functional deficiency of the cytoplasmic enzyme methionine synthase which requires methylcobalamin (MeCbl) as a cofactor. We compared the growth of cultured fibroblasts from controls with those from patients with a selective deficiency of MeCbl (cblE and cblG) and with those from patients with a defect in both MeCbl and adenosylcobalamin (AdoCbl) (cblC, cblD and cblF). Cells were grown in methionine and folic acid free media and in fully supplemented medium. Control cells were able to grow in the deficient medium supplied with homocysteine, cobalamin and folate, while mutant cells were not, due to their inability to synthesize methionine from its immediate metabolic precursor, homocysteine. This differential growth is useful for screening for genetic defects of methionine biosynthesis. Moreover, by correcting methionine auxotrophy in these cells, it may be possible to isolate genes which code for the products that are deficient in these disorders.
42

Expression studies on the shortbranched chain acyl-CoA dehydrogenase (SBCAD) gene

Vicanek, Caroline Michaela January 1995 (has links)
Short/branched chain acyl-CoA dehydrogenase (SBCAD), a member of the acyl-CoA dehydrogenase (ACD) family of enzymes, catalyzes the oxidation of branched chain fatty acids and the branched chain amino acids isoleucine and valine. This research project focuses on expression studies of the SBCAD gene. Northern blot analysis detected two SBCAD mRNA species of 2.7 and 6.5 kb in various human tissues and cell types. A single 4.1 and 2.0 kb SBCAD message was detected in rat and pig tissues, respectively, revealing a species difference in SBCAD mRNA size. Studies of human and rat SBCAD tissue-specificity and relative abundance, at both the RNA and protein levels, identified liver and kidney as the tissues with the highest levels of SBCAD expression, establishing a unique tissue-specific expression pattern that is not seen among the other members of the ACD family. Furthermore, a fetal and adult difference in SBCAD expression was observed in human kidney, suggesting that the SBCAD gene may be developmentally regulated in some tissues. Finally, an attempt was made to isolate and characterize the SBCAD promoter region in order to provide valuable data for future SBCAD promoter studies.
43

Molecular genetics of holocarboxylase synthetase deficiency

Léon Del Rio, Alfonso January 1995 (has links)
The objective of this thesis was to determine the molecular basis of neonatal multiple carboxylase deficiency (MCD) produced by an impairment in holocarboxylase synthetase (HCS) activity and the origin of the biotin-responsiveness that characterizes this disease. To determine HCS activity, I developed a peptide substrate and used the biotinylation system of E: coli to determine its properties. C-terminal fragments of the $ alpha$ subunit of human propionyl-CoA carboxylase (PCC-$ alpha$) were expressed in E. coli and site-directed mutagenesis was used to define the residues required for biotinylation by the bacterial biotin ligase, BirA. These experiments showed that the biotin region of PCC-$ alpha$ can act as an autonomous domain for biotinylation and suggested its use as substrate for human HCS. For the molecular characterization of MCD, I isolated several cDNA clones encoding human HCS by functional complementation of an E. coli mutant with a temperature-sensitive BirA. Comparison of the predicted amino acid sequence of HCS with bacterial biotin ligases allowed the identification of the putative biotin-binding domain of this protein. Mutation analysis of DNA from HCS deficient patients showed that most of the changes in the HCS sequence are clustered in the biotin-binding domain. All the patients tested in this study showed deficiency of HCS activity as determined using the PCC-$ alpha$ peptide as substrate for biotinylation. The biotin-responsiveness was demonstrated by obtaining a stimulation of HCS activity of MCD cells at high biotin concentrations while remaining unstimulated in extracts of normal cells. Together with the mutation studies, these results showed that neonatal MCD is caused by mutations in the biotin binding domain of HCS which reduce the affinity of the enzyme towards biotin. This change in the kinetic properties of HCS results in the inefficient biotinylation of carboxylases at physiological concentrations of biotin. The defect can be over
44

Enzyme substitution therapy for hyperphenylalaninemia with phenylalanine ammonia lyase : an alternative to low phenylalanine dietaty treatment : effective in mouse models

Sarkissian, Christineh N. January 2000 (has links)
Phenylketonuria (PKU) and related forms of non-PKU hyperphenylalaninemias (HPA) result from deficiencies in phenylalanine hydroxylase (PAH), the hepatic enzyme that catalyses the conversion of phenylalanine (phe) to tyrosine (tyr). Patients are characterised by a metabolic phenotype comprising elevated levels of phe and some of its metabolites, notably phenyllactate (PLA), phenylacetate (PAA) and phenylpyruvate (PPA), in both tissue and body fluids. Treatment from birth with low-phe diet largely prevents the severe mental retardation that is its major consequence. / Mechanisms underlying the pathophysiology of PKU are still not fully understood; to this end, the availability of an orthologous animal model is relevant. A number of N-ethyl-N-nitrosourea (ENU) mutagenized mouse strains have become available. I report a new heteorallelic strain, developed by crossing female ENU1 (with mild non-PKU HPA) with a male ENU2/+ carrier of a 'severe' PKU-causing allele. I describe the new hybrid ENU1/2 strain and compare it with control (BTBR/Pas), ENU1, ENU2 and the heterozygous counterparts. The ENU1, ENU1/2 and ENU2 strains display mild, moderate and severe phenotypes, respectively, relative to the control and heterozygous counterparts. / I describe a novel method using negative ion chemical ionization gas chromatography/mass spectrometry (NICI-GC/MS) to measure the concentration of PLA, PAA and PPA in the brain of normal and mutant mice. Although elevated moderately in HPA and more so in PKU mice, concentrations of these metabolites are not sufficient to explain impaired brain function; however phe is present in brain at levels associated with harm. / Finally, I describe a new modality for treatment of HPA, compatible with better human compliance: it involves enzyme substitution with non-absorbable and protected phenylalanine ammonia lyase (PAL) in the intestinal lumen, to convert L-phenylalanine to the harmless metabolites (trans-cinnamic acid and trace ammonia). PAL, taken orally, substitutes for the deficient PAH enzyme and depletes body pools of excess phe. I describe an efficient recombinant approach to produce PAL enzyme. I also provide proofs of both pharmacologic and physiologic principles by testing PAL in the orthologous mutant mouse strains with HPA. The findings encourage further development of PAL for oral use as an ancillary treatment of human PKU.
45

Molecular genetics and characterisation of functional methionine synthase deficiency : mutation analysis and gene cloning

Wilson, Aaron. January 1998 (has links)
Methionine synthase (MS) is a vitamin B12(cobalamin;cbl) dependent enzyme that catalyses the methylation of homocysteine to methionine. It uses methyl-cbl as coenzyme and in ethyl tetrahydrofolate as the methyl donor. Methionine sythase reductase (MSR) maintains MS in it active state using S-adenosyl methionine as the methyl donor. Functional MS deficiency may occur as a result of a defect in either enzyme. Patients with this disorder have been classified into two complemetation groups according to which protein is defective: cblG patients are deficient in MS and cblE patients in MSR. A subset of cblG, known as cblG variant, is unique in showing barely detectable MS activity and failure of cbl incorporation into MS in patient fibroblasts. I report the mutations responsible for three cblG variant patients, two of them siblings, and connect their phenotype to lack of protein expression. I also report the cloning of the MSR cDNA, aided by confirming the identity of the cDNA through the discovery of two deleterious mutations in three cblE patients. These findings contribute to the overall understanding of functional MS deficiency.
46

Molecular basis of biotin-responsive multiple carboxylase deficiency

Dupuis, Lucie. January 1996 (has links)
Multiple carboxylase deficiency (MCD) results from a decreased activity of holocarboxylase synthetase (HCS) which is responsible for the biotinylation of the four biotin-dependent carboxylases found in humans. The disease can be treated with pharmacologic doses of oral biotin (biotin-responsiveness). The cDNA for HCS contains a biotin-binding domain deduced by analogy with the sequence and crystal structure of the E. coli BirA biotin ligase. E. coli birA$ sp-$ mutations causing biotin-auxotrophy all localize to this region. Of six point mutations I have identified in MCD patients, four localize to the biotin-binding region. In order to assess the HCS activity associated with patient mutations, I used an assay based on the expression of mutant HCS in E. coli. The method is based on the ability of mutant HCS to biotinylate the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase in a temperature-sensitive birA$ sp-$ E. coli strain using 3H-biotin as tracer. I have shown that all of the mutations cause a severe decrease in HCS activity. In addition, I have shown that five of the mutant HCS are biotin-responsive. These findings are a major contribution to the understanding of the mechanism of biotin-responsiveness.
47

The intracellular localization of holocarboxylase synthetase /

Dumas, Richard. January 1999 (has links)
Holocarboxylase synthetase (HCS) catalyzes the biotinylation of three mitochondrial and one cytosolic forms of biotin-dependent carboxylases in humans. Patients suffering from this autosomal recessive disease have Multiple Carboxylase Deficiency (MCD) with symptoms of life-threatening metabolic acidosis which, in almost all cases, can be successfully treated with pharmacologic doses of oral biotin. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS maybe targeted to the cytoplasm and mitochondria or that carboxylases are biotinylated in the cytoplasm prior to import into the mitochondria. In order to resolve the compartmentalization of HCS, 5' HCS cDNA sequences have been examined for a targeting signal and a candidate sequence was tested for its capacity to target mitochondria. Analysis of 5' cDNA reveals complex alternative splicing, none of which appear to contain mitochondrial targeting sequences. In addition, antibodies have been developed in order to perform immunochemical analysis of the subcellular distribution of HCS. Polyclonal antisera were raised against full length HCS as well as two peptides corresponding to a 20 amino acid region in the N-terminus and to the 20 amino acids preceding the stop codon. Immunohistochemical staining of human fibroblasts with the antibody to full length HCS gives cytosolic, mitochondrial and nuclear localization. Interestingly, analysis with the N-terminal antiserum reveals a large punctate staining pattern exclusively localized to the nucleus. The corresponding C-terminal antiserum reveals solid nuclear staining with some mitochondrial co-localization. Taken together, these results indicate the ubiquitous nature of HCS in human cells and also allude to a potential role for HCS in the nucleus of human cells.
48

The lysinuric protein intolerance phenotype : amino acid transport in cultured skin fibroblasts

Smith, Douglas W., 1961- January 1986 (has links)
No description available.
49

Molecular and clinical genetic studies of a novel variant of familial hypercalcemia /

Szabo, Eva. January 2002 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 4 uppsatser.
50

Metabolic disturbances in relation to serum calcium and primary hyperparathyroidism /

Hagström, Emil, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 5 uppsatser.

Page generated in 0.0569 seconds