• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolite profiling associated with productive recombinant CHO cell culture

Porncharoennop, Chompoonuth January 2017 (has links)
A positive correlation between the flux of TCA cycle and productivity of Chinese Hamster Ovary (CHO) cells has been reported. Earlier work in this laboratory revealed that supplementation with nutrients that enter the TCA cycle (combination of glucose (Glc), pyruvate (Py), aspartate (Asp), asparagine (Asn) and glutamate (Glu)) significantly increased maximum viable cell density and antibody production of recombinant CHO cells. Increased amounts of extracellular citrate was associated with feeding conditions. It was hypothesized that increased flux through the TCA cycle and related metabolism was linked to enhanced growth and/or productivity of CHO cells. Therefore, the aim of this thesis is to clarify these relationships to provide routes to improve the efficiency of CHO cells by nutrient supplementation and metabolic engineering. The relationship between growth, antibody production and metabolite profiles of CHO-LB01 cells was examined in response to individual supplementation with Asn, Asp, Glu, Py and β-hydroxybutyrate (HB). Feeding HB significantly increased antibody titre while Asn feeding increased maximum cell density but led to earlier cell death. Both nutrients increased the amounts of TCA cycle intermediates and decreased the amounts of lactate, glycerol, sorbitol and amino acids. Moreover, oxygen consumption rate was increased in the presence of Asn or HB. This finding inferred that increased production of the TCA cycle intermediates in cells fed Asn or HB correlated with enhanced flux of the TCA cycle leading to enhanced oxidative metabolism. Combination of Asn or HB with Glc further improved cell growth, increased antibody titre and enhanced metabolic responses to feeds (TCA cycle intermediates). Based on these results, inhibition of sorbitol production using chemical reagent (EPBC) and siRNA designed against Akr1b1 and overexpression of malate dehydrogenase II (MDH II) were undertaken in order to increased flow of carbon atoms to TCA cycle and/or increased flux in the TCA cycle, respectively. Inhibition of sorbitol production was achieved in the presence of EBPC but there was no improvement of cell culture performance and accumulation of TCA cycle intermediates remained the same. CHO cells transfected with exogenous Mdh2 did not show improved cell culture performance. Whilst stable clones exhibited variable MDH II expression at protein level (and antibody titre), overexpression of exogenous MDH II could not be confirmed by Western blot. One CHO-MDH II clone showed greater antibody titre and exhibited similar metabolite profiling with cells fed Asn or HB. This contrasted to the majority of clones that were low producers. Comparison by RNA-Seq transcriptomic profiling of high- and low-producing CHO-MDH II clones showed that the majority of differentially expressed genes were genes related to cytoskeleton-related element and cell signaling pathways. Overall, these results confirmed the relationship between increased the amount of TCA cycle intermediates and increased antibody production. Increased amount of TCA cycle intermediates could result in increased the flow of TCA cycle lead to enhance energy and antibody production. In addition, this work represents the first study on addition of HB offers a simple effective strategy to increase antibody production.
2

Environmental Metabolomics - Metabolomische Studien zu Biodiversität, phänotypischer Plastizität und biotischen Wechselwirkungen von Pflanzen / Environmental Metabolomics - metabolic investigations of plants in response to biodiversity, phenotypic plasticity and biotic interactions

Scherling, Christian January 2009 (has links)
Ein genereller Ansatz zur Charakterisierung von biologischen Systemen bietet die Untersuchung des Metaboloms, dessen Analyse als „Metabolomics“ bezeichnet wird. “Omics”- Technologien haben das Ziel, ohne Selektionskriterien möglichst alle Bestandteile einer biologischen Probe zu detektieren (identifizieren und quantifizieren), um daraus Rückschlüsse auf nicht vorhersehbare und somit neuartige Korrelationen in biologischen Systemen zu ziehen. Ein zentrales Dogma in der Biologie besteht in der Kausalität zwischen Gen – Enzym – Metabolite. Perturbationen auf einer Ebene rufen systemische Antworten hervor, die in einem veränderten Phänotyp münden können. Metabolite sind die Endprodukte von zellulären regulatorischen Prozessen, deren Abundanz durch die Resonanz auf genetische Modifikationen oder Umwelteinflüsse zurückzuführen ist. Zudem repräsentieren Metabolite ultimativ den Phänotyp eines Organismus und haben die Fähigkeit als Biomarker zu fungieren. Die integrale Analyse verschiedenster Stoffwechselwegen wie Krebszyklus, Pentosephosphatzyklus oder Calvinzyklus offeriert die Identifikation von metabolischen Mustern. In dieser Arbeit wurden sowohl das targeted Profiling via GC-TOF-MS als auch das untargeted Profiling via GC-TOF-MS und LC-FT-MS als analytische Strategien genutzt, um biologische Systeme anhand ihrer Metabolite zu charakterisieren und um physiologische Muster als Resonanz auf endogene oder exogene Stimuli zu erkennen. Dabei standen die metabolische, phänotypische und genotypische Plastizität von Pflanzen im Fokus der Untersuchungen. Metabolische Varianzen eines Phänotyps reflektieren die genotyp-abhängige Resonanz des Organismus auf umweltbedingte Parameter (abiotischer und biotischer Stress, Entwicklung) und können mit sensitiven Metabolite Profiling Methoden determiniert werden. Diese Anwendungen haben unter anderem auch zum Begriff des „Environmental Metabolomics“ geführt. In Kapitel 2 wurde der Einfluss biotischer Interaktionen von endophytischen Bakterien auf den Metabolismus von Pappelklonen untersucht; Kapitel 3 betrachtet die metabolische Plastizität von Pflanzen im Freiland auf veränderte biotische Interaktionsmuster (Konkurrenz/Diversität/Artenzusammensetzung); Abschließend wurde in Kapitel 4 der Einfluss von spezifischen genetischen Modifikationen an Peroxisomen und den daraus resultierenden veränderten metabolischen Fluss der Photorespiration dargestellt. Aufgrund der sensitiven Analyse- Technik konnten metabolische Phänotypen, die nicht zwingend in einen morphologischen Phänotyp mündeten, in drei biologischen Systemen identifiziert und in einen stoffwechselphysiologischen Kontext gestellt werden. Die drei untersuchten biologischen Systeme – in vitro- Pappeln, Grünland- Arten (Arrhenatherion-Gesellschaft) und der Modellorganismus (Arabidopsis) – belegten anschaulich die Plastizität des Metabolismus der Arten, welche durch endogene oder exogene Faktoren erzeugt wurden. / A general approach to characterise biological systems offers the analysis of the metabolome, named “metabolomics”. “Omics”- technologies are untargeted approaches without any selection criteria which aim to detect every potential analyte in a sample in order to draw conclusions about new correlations in biological systems. A central dogma in biology is the causality between gene – enzyme – metabolite. Perturbations on one level are reflected in systemic response, which possibly result in a changed phenotype. Metabolites are end products of its gene expression and metabolism, whose abundance is determined as a resonance of genetic modifications or environmental disturbance. Furthermore metabolites represent the ultimate phenotype of an organism and are able to act as a biomarker. The integral analysis of distinct metabolic pathways like TCA, Pentose phosphate and Calvin cycle consequently leads to the identification of metabolic patterns. In this work targeted profiling via GC-TOF-MS as well as untargeted profiling via GC-TOF-MS and LC-FT-MS were used as analytical strategies to characterise biological systems on the basis of their metabolites and to identify physiological patterns as resonance of endogenic or exogenic stimuli. The focus of the investigations concentrates on the metabolic, phenotypic and genotypic plasticity of plants. Metabolic variance of a phenotype is reflected in the genotypic dependence response of an organism on environmental parameters which may be detected via sensitive metabolic profiling methods. In chapter 2 the influence of biotic interaction of endophytic bacteria on the metabolism of their poplar host was analyzed; chapter 3 explores the metabolic plasticity of field-grown grassland species as a consequence of biotic interaction pattern (competition / diversity / species composition); In conclusion, chapter 4 illustrates the influence of specific genetic modifications on peroxisomes and the consequent changed metabolic flux in the photorespiration pathway. Due to the sensitive analytic methods, metabolic phenotypes in all three biological systems could be identified and classified in a physiological context. The three biological systems – in vitro poplar plants, field-grown grassland species and the model organism Arabidopsis – demonstrate the plasticity of the metabolism of species in response to stimuli.
3

Metabolite profiling of the coccolithophore Emiliania huxleyi to examine links between calcification and central metabolism

Salmon, Deborah Louise January 2013 (has links)
Coccolithophores are single-celled marine phytoplankton, which produce intricate calcium carbonate platelets or ‘coccoliths’. Emiliania huxleyi is the most abundant and widespread coccolithophore, and is one of the most productive calcifying species on earth, playing a key role in global carbon, carbonate and sulphur cycles. Despite much research into coccolithophore biology, the underlying function of their coccoliths is still unknown. The main aim of the research reported in this thesis was to examine the impact of calcification on metabolism in coccolithophores. Calcification is a significant global process, so it is important to discover what effect it has on the metabolism of cells. The major metabolites each have different costs and benefits to the cell, which will vary depending on the habitat and environmental conditions the cell is in. By comparing the metabolite profiles of different strains, including calcifying, non-calcifying, haploid and diploid cells, differences in metabolite composition and potential patterns related to cell type were investigated. Low molecular weight (LMW) metabolites were characterised using a combination of metabolomic techniques. In agreement with previous research, dimethylsulphoniopropionate (DMSP) was the most abundant compound, followed by mannitol and glycine betaine (GBT). Less abundant sugars, polyols and amino acids were also identified. Environmental factors were manipulated to investigate how the principal metabolites were affected by salinity, different light intensities and nutrient (phosphate and nitrate) limitation. The data revealed a striking difference between haploid and diploid cells of the same strain, with the haploid containing lower concentrations of most of the major metabolites. Thus it is proposed that haploid cells have a different osmoregulatory strategy from the diploid cells. A negative correlation was found between DMSP and mannitol, suggesting that mannitol has a dual function, not only as a major storage compound but also as a principal compatible solute. Untargeted metabolite profiling is becoming a popular tool to investigate phenotypes and varying environmental conditions. LC-ESI-QTOF-MS/MS analyses of a wide range of metabolites showed that it is an effective method to identify differences and similarities between E. huxleyi strains grown in different conditions. Strain and growth phase appear to be the more important factors in differentiating metabolite profiles. Surprisingly there were no obvious metabolite profiling differences between calcifying and non-calcifying cells. Untargeted analysis can, however, be used to identify the compounds that did display differences, and which may be important biomarkers, so warrant further investigation. A range of metabolite profiling techniques highlighted important differences between strains, which will hopefully lead onto further research into the metabolome of E. huxleyi, and the unravelling of important metabolic pathways. There has been little research into the LMW metabolites of E. huxleyi, and especially comparisons between strains. Thus the use of metabolomics is a novel way to investigate the difference between cell types and the possible functions of calcification.
4

Comprehensive metabolite analysis in Chlamydomonas reinhardtii : method development and application to the study of environmental and genetic perturbations

Bölling, Christian January 2006 (has links)
This study introduces a method for multiparallel analysis of small organic compounds in the unicellular green alga Chlamydomonas reinhardtii, one of the premier model organisms in cell biology. The comprehensive study of the changes of metabolite composition, or metabolomics, in response to environmental, genetic or developmental signals is an important complement of other functional genomic techniques in the effort to develop an understanding of how genes, proteins and metabolites are all integrated into a seamless and dynamic network to sustain cellular functions. The sample preparation protocol was optimized to quickly inactivate enzymatic activity, achieve maximum extraction capacity and process large sample quantities. As a result of the rapid sampling, extraction and analysis by gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF) more than 800 analytes from a single sample can be measured, of which over a 100 could be positively identified. As part of the analysis of GC-TOF raw data, aliquot ratio analysis to systematically remove artifact signals and tools for the use of principal component analysis (PCA) on metabolomic datasets are proposed. Cells subjected to nitrogen (N), phosphorus (P), sulfur (S) or iron (Fe) depleted growth conditions develop highly distinctive metabolite profiles with metabolites implicated in many different processes being affected in their concentration during adaptation to nutrient deprivation. Metabolite profiling allowed characterization of both specific and general responses to nutrient deprivation at the metabolite level. Modulation of the substrates for N-assimilation and the oxidative pentose phosphate pathway indicated a priority for maintaining the capability for immediate activation of N assimilation even under conditions of decreased metabolic activity and arrested growth, while the rise in 4-hydroxyproline in S deprived cells could be related to enhanced degradation of proteins of the cell wall. The adaptation to sulfur deficiency was analyzed with greater temporal resolution and responses of wild-type cells were compared with mutant cells deficient in SAC1, an important regulator of the sulfur deficiency response. Whereas concurrent metabolite depletion and accumulation occurs during adaptation to S deprivation in wild-type cells, the sac1 mutant strain is characterized by a massive incapability to sustain many processes that normally lead to transient or permanent accumulation of the levels of certain metabolites or recovery of metabolite levels after initial down-regulation. For most of the steps in arginine biosynthesis in Chlamydomonas mutants have been isolated that are deficient in the respective enzyme activities. Three strains deficient in the activities of N-acetylglutamate-5-phosphate reductase (arg1), N2 acetylornithine-aminotransferase (arg9), and argininosuccinate lyase (arg2), respectively, were analyzed with regard to activation of endogenous arginine biosynthesis after withdrawal of externally supplied arginine. Enzymatic blocks in the arginine biosynthetic pathway could be characterized by precursor accumulation, like the amassment of argininosuccinate in arg2 cells, and depletion of intermediates occurring downstream of the enzymatic block, e.g. N2-acetylornithine, ornithine, and argininosuccinate depletion in arg9 cells. The unexpected finding of substantial levels of the arginine pathway intermediates N-acetylornithine, citrulline, and argininosuccinate downstream the enzymatic block in arg1 cells provided an explanation for the residual growth capacity of these cells in the absence of external arginine sources. The presence of these compounds, together with the unusual accumulation of N-Acetylglutamate, the first intermediate that commits the glutamate backbone to ornithine and arginine biosynthesis, in arg1 cells suggests that alternative pathways, possibly involving the activity of ornithine aminotransferase, may be active when the default reaction sequence to produce ornithine via acetylation of glutamate is disabled. / Entwicklung und Anwendung von Methoden zur multiparallelen Analyse von Metaboliten in der einzelligen Grünalge Chlamydomonas reinhardtii, einem der wichtigsten Modellorganismen der Zellbiologie, sind Gegenstand dieser Arbeit. Metabolomanalyse, die umfassende Analyse von Veränderungen der Konzentrationen von Stoffwechselprodukten durch Umweltreize oder genetische und entwicklungsbedingte Signale, ist ein wichtiges Komplement anderer Genomanalysemethoden, um die Integration von Genen, Proteinen und Metaboliten in ein nahtloses und dynamisches Netzwerk zur Aufrechterhaltung der Lebensfunktionen eines Organismus zu verstehen. Die Methode wurde im Hinblick auf schnelle Inaktivierung enzymatischer Aktivität, Maximierung der Extraktionskapazität und Behandlung großer Probenmengen optimiert. Im Ergebnis der Probenaufarbeitung, Extraktion und Analyse mittels Gaschromatographie und Time-Of-Flight-Massenspektrometrie konnten mehr als 800 analytische Signale in Einzelproben dargestellt werden, von denen über 100 identifiziert werden konnten. Die Arbeit stellt methodische Innovationen zur systematischen Erkennung von Artefakten in GC-MS Chromatogrammen und Werkzeuge zur Anwendung der Hauptkomponentenanalyse auf Metabolom-Daten vor. Zellen unter Stickstoff- (N), Phosphor- (P), Schwefel- (S), oder Eisen- (Fe) Mangel zeigen deutliche Unterschiede in ihrer Metabolitenausstattung. Die Anpassung an die einzelnen Nährstoffmangelsituationen ist durch spezifische Änderungen einer Reihe von Metaboliten zentraler Prozesse des Primärstoffwechsels gekennzeichnet. Die Konzentrationsänderungen von Substraten für die Stickstoffassimilation und den oxidativen Pentosephosphatweg deuten darauf hin, dass die Fähigkeit zur schnellen Aktivierung der N-Assimilation auch unter Bedingungen herabgesetzter Stoffwechsel- und Wachstumsaktivität aufrechterhalten wird. Die Akkumulation von 4-Hydroxyprolin unter Schwefelmangel könnte im Zusammenhang stehen mit der Degradation von Proteinen der Chlamydomonas-Zellwand, deren wesentlicher Bestandteil hydroxyprolinreiche Glykoproteine sind und die unter Schwefelmangel aktiv umgebaut wird. Die Anpassung an Schwefelmangel wurde mit größerer zeitlicher Auflösung in Wildtyp-Zellen und Zellen des sac1-Stammes untersucht. SAC1 ist ein zentraler Regulator der Schwefelmangelantwort in Chlamydomonas. Zeitgleiche Ab- und Zunahme von Metaboliten ist ein charakteristisches Element der Anpassung an Schwefelmangel in Wildtypzellen. Die Reaktion von SAC1-Mutanten auf Schwefelmangel ist durch weit reichenden Verlust zur Steuerung von Prozessen gekennzeichnet, die normalerweise zur vorübergehenden oder dauerhaften Anreicherung bestimmter Metabolite führen. Die Verfügbarkeit von Chlamydomonas-Stämmen mit fehlender Enzymaktivität für fast jeden der Schritte der Argininbiosynthese eröffnet die Möglichkeit, das Potential der Metabolitenanalyse zur Untersuchung der Regulation der Aminosäurebiosynthese in photosynthetischen Eukaryoten zur Anwendung zu bringen. Drei Stämme, mit fehlender Aktivität für N-Acetylglutamat-5-phosphat Reduktase (arg1), N2 Acetylornithin-Aminotransferase (arg9) beziehungsweise Argininosuccinat Lyase (arg2) wurden in Bezug auf die Aktivierung ihrer endogenen Argininbiosynthese nach Entzug externer Argininquellen analysiert. Die einzelnen enzymatischen Blocks konnten durch Precursor-Anreicherung, wie die Anhäufung von Argininosuccinat in arg2-Zellen, und Erschöpfung von Intermediaten nachgelagerter Reaktionen, beispielsweise die deutliche Abnahme von N2-Acetylornithin, Ornithin und Argininosuccinat in arg9-Zellen charakterisiert werden. Das unerwartete Vorhandensein von zum Teil das Wildtyp-Niveau überschreitender Mengen von N2-Acetylornithin, Citrullin und Argininosuccinat, die Produkte bzw. Substrate dem enzymatischen Block nachgelagerter Reaktionen in arg1-Zellen sind, bot eine Erklärung für eine noch vorhandene Restkapazität zum Wachstum des arg1-Stamms auch ohne äußere Arginingabe. Der Nachweis dieser Verbindungen sowie die ungewöhnliche Anreicherung von N-Acetylglutamat, der ersten Verbindung, die das Glutamat-Gerüst für die Ornithin- und Argininsynthese bindet, in arg1-Zellen könnte auf alternative Reaktionen, möglicherweise unter Beteiligung von Ornithin-Aminotransferase, zur Synthese von Ornithin hindeuten, die in Erscheinung treten, wenn die Synthesekette nach Acetylierung von Glutamat blockiert ist.
5

Functional evolution of R2R3 MYB transcription factors in the grasses

Dias, Anusha P. 03 February 2004 (has links)
No description available.
6

Applications of Mass Spectrometry to Analysis of Prodiginines, Bioactivated Methylenedianiline Intermediates, and Hypoxia Induced Changes in the Zebrafish Skeletal Muscle Proteome

Chen, Kan 19 December 2008 (has links)
Mass spectrometry coupled with liquid chromatography and gel electrophoresis enables separation and detection of components in a complex mixture. During the last two decades, its applications were dramatically extended and remarkable progress has been made in many fields, in particular, environmental and biological analyses. This dissertation focuses on identification and characterization of biologically active compounds and comparative analysis of protein expression changes. The first two projects (Chapters 2 and 3) focus on the application of LC/MS approach to profile the bioactivated intermediates of 4, 4'-methylenedianiline (DAPM) from rat vascular smooth muscle cells (VSMCs) and bile. In our study, several DAPM metabolites were detected and characterized in detail by liquid chromatography-electrospray tandem mass spectrometry. The structural assignments of these metabolites from VSMCs and rat bile significantly improve our understanding of DAPM biotransformations and toxicity. The third project described in Chapter 4 focuses on using electrospray tandem mass spectrometry (ES-MS/MS) and theoretical calculation (GAUSSIAN 03 program) to investigate the unusual methyl radical loss and consecutive fragment ions that dominate the low-energy collision induced dissociation (CID) mass spectra of prodiginine compounds. Structures of the fragment ions are proposed and explanations are given to rationalize the observed competition between the formation of even-electron ions and radical ions. Our study shows that the lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. In Chapter 5, hypoxia-induced changes of zebrafish skeletal muscle were studied using two-dimensional difference in-gel electrophoresis (2D-DIGE) in vivo after 48 h in hypoxia vs. normoxia. The results showed that proteins involved in mitochondrial oxidative metabolism are down-regulated, whereas glycolytic enzymes are up-regulated to compensate for the loss of ATP synthesis in aerobic metabolism. The up-regulation of two spots identified as hemoglobin variants was also observed. These protein expression changes are consistent with a hypoxic response that enhances anaerobic metabolism or O2 transport to tissues.
7

The Application of NMR-based Metabolomics in Assessing the Sub-lethal Toxicity of Organohalogenated Pesticides to Earthworms

Yuk, Jimmy 08 January 2013 (has links)
The extensive agricultural usage of organohalogenated pesticides has raised many concerns about their potential hazards especially in the soil environment. Environmental metabolomics is an emerging field that investigates the changes in the metabolic profile of native organisms in their environment due to the presence of an environmental stressor. Research presented here explores the potential of Nuclear Magnetic Resonance (NMR)-based metabolomics to examine the sub-lethal exposure of the earthworm, Eisenia fetida to sub-lethal concentrations of organohalogenated pesticides. Various one-dimensional (1-D) and two dimensional (2-D) NMR techniques were compared in a contact filter paper test earthworm metabolomic study using endosulfan, a prevalent pesticide in the environment. The results determined that both the 1H Presaturation Utilizing Gradients and Echos (PURGE) and the 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR techniques were most effective in discriminating and identifying significant metabolites in earthworms due to contaminant exposure. These two NMR techniques were further explored in another metabolomic study using various sub-lethal concentrations of endosulfan and an organofluorine pesticide, trifluralin to E. fetida. Principal component analysis (PCA) tests showed increasing separation between the exposed and unexposed earthworms as the concentrations for both contaminants increased. A neurotoxic mode of action (MOA) for endosulfan and a non-polar narcotic MOA for trifluralin were delineated as many significant metabolites, arising from exposure, were identified. The earthworm tissue extract is commonly used as the biological medium for metabolomic studies. However, many overlapping resonances are apparent in an earthworm tissue extract NMR spectrum due to the abundance of metabolites present. To mitigate this spectral overlap, the earthworm’s coelomic fluid (CF) was tested as a complementary biological medium to the tissue extract in an endosulfan exposure metabolomic study to identify additional metabolites of stress. Compared to tests on the tissue extract, a plethora of different metabolites were identified in the earthworm CF using 1-D PURGE and 2-D HSQC NMR techniques. In addition to the neurotoxic MOA identified previously, an apoptotic MOA was also postulated due to endosulfan exposure. This thesis also explored the application of 1-D and 2-D NMR techniques in a soil metabolomic study to understand the exposure of E. fetida to sub-lethal concentrations of endosulfan and its main degradation product, endosulfan sulfate. The earthworm’s CF and tissue extract were both analyzed to maximize the significant metabolites identified due to contaminant exposure. The PCA results identified similar toxicity for both organochlorine contaminants as the same separation, between exposed to the unexposed earthworms, were detected at various concentrations. Both neurotoxic and apopotic MOAs were observed as identical fluctuations of significant metabolites were found. This research demonstrates the potential of NMR-based metabolomics as a powerful environmental monitoring tool to understand sub-lethal organohalogenated pesticide exposure in soil using earthworms as living probes.
8

The Application of NMR-based Metabolomics in Assessing the Sub-lethal Toxicity of Organohalogenated Pesticides to Earthworms

Yuk, Jimmy 08 January 2013 (has links)
The extensive agricultural usage of organohalogenated pesticides has raised many concerns about their potential hazards especially in the soil environment. Environmental metabolomics is an emerging field that investigates the changes in the metabolic profile of native organisms in their environment due to the presence of an environmental stressor. Research presented here explores the potential of Nuclear Magnetic Resonance (NMR)-based metabolomics to examine the sub-lethal exposure of the earthworm, Eisenia fetida to sub-lethal concentrations of organohalogenated pesticides. Various one-dimensional (1-D) and two dimensional (2-D) NMR techniques were compared in a contact filter paper test earthworm metabolomic study using endosulfan, a prevalent pesticide in the environment. The results determined that both the 1H Presaturation Utilizing Gradients and Echos (PURGE) and the 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR techniques were most effective in discriminating and identifying significant metabolites in earthworms due to contaminant exposure. These two NMR techniques were further explored in another metabolomic study using various sub-lethal concentrations of endosulfan and an organofluorine pesticide, trifluralin to E. fetida. Principal component analysis (PCA) tests showed increasing separation between the exposed and unexposed earthworms as the concentrations for both contaminants increased. A neurotoxic mode of action (MOA) for endosulfan and a non-polar narcotic MOA for trifluralin were delineated as many significant metabolites, arising from exposure, were identified. The earthworm tissue extract is commonly used as the biological medium for metabolomic studies. However, many overlapping resonances are apparent in an earthworm tissue extract NMR spectrum due to the abundance of metabolites present. To mitigate this spectral overlap, the earthworm’s coelomic fluid (CF) was tested as a complementary biological medium to the tissue extract in an endosulfan exposure metabolomic study to identify additional metabolites of stress. Compared to tests on the tissue extract, a plethora of different metabolites were identified in the earthworm CF using 1-D PURGE and 2-D HSQC NMR techniques. In addition to the neurotoxic MOA identified previously, an apoptotic MOA was also postulated due to endosulfan exposure. This thesis also explored the application of 1-D and 2-D NMR techniques in a soil metabolomic study to understand the exposure of E. fetida to sub-lethal concentrations of endosulfan and its main degradation product, endosulfan sulfate. The earthworm’s CF and tissue extract were both analyzed to maximize the significant metabolites identified due to contaminant exposure. The PCA results identified similar toxicity for both organochlorine contaminants as the same separation, between exposed to the unexposed earthworms, were detected at various concentrations. Both neurotoxic and apopotic MOAs were observed as identical fluctuations of significant metabolites were found. This research demonstrates the potential of NMR-based metabolomics as a powerful environmental monitoring tool to understand sub-lethal organohalogenated pesticide exposure in soil using earthworms as living probes.
9

The coordination of nickel in hyperaccumulating plants

Callahan, Damien L. Unknown Date (has links) (PDF)
The co-ordination of Ni in hyperaccumulator plants was investigated using a number of mass spectrometry (MS)-based analytical techniques. Initial field studies on nickeliferous (lateritic) soils in Western Australia failed to identify plants containing elevated metal concentrations. For this reason, Ni-hyperaccumulators were collected from known ultramafic sites in New Caledonia, as well as grown under controlled conditions. Using electrospray ionization MS a Ni-nicotianamine (Ni-NA) complex [NiII(C12H20N3O6)]+ was identified in the South African Ni-hyperaccumulator Berkheya coddii. The association between Ni and NA was examined further in a range of Thlaspi species which accumulate different concentrations of Ni and Zn in their foliar tissues. In order to quantitate the concentration of NA a new liquid chromatography-MS (LC-MS) based analytical protocol was developed which allowed the quantification of NA and free amino acids. From the analysis of the leaf tissue in Thlaspi a strong correlation emerged between Ni and NA but not Zn. This suggested that NA plays a role in the transport of Ni in Ni-hyperaccumulating Thlaspi plants. An inverse proportionality was found between Fe and Ni. Higher NA production could be related to maintenance of Fe homeostasis. A correlation was also found between Zn and asparagine. These results are consistent with the operation of separate transport mechanisms for Ni and Zn. Further extreme examples of Ni-hyperaccumulation were also examined using LC-MS and metabolite profiling based on gas chromatography-MS (GC-MS). (For complete abstract open document)
10

Heterosis in the freezing tolerance of Arabidopsis thaliana (L.)Heynh

Korn, Marina 10 August 2010 (has links)
Die vorliegende Arbeit beschäftigt sich mit Heterosis in der Frosttoleranz von Arabidopsis-Kreuzungen. Die genetische Basis von Heterosis, der Verbesserung heterozygoter F1-Hybriden gegenüber den homozygoten Eltern, ist unbekannt. Vermutet werden Dominanz, Überdominanz oder Epistasie. Die zur Kreuzung verwendeten Parentalakzessionen entstammen unterschiedlichen Klimaten und differieren stark in ihrer Frosttoleranz (Lethaltemperatur, LT50). Von 24 reziproken Kreuzungen mit C24 und Col-0 wurden LT50, Prolin- und Zuckergehalt bestimmt. Die Untersuchungen an nicht akklimatisierten und kälteakklimatisierten Pflanzen zeigen häufiger Heterosis in C24- als in Col-Hybriden mit klarem Anstieg nach dem Akklimatisieren. Es besteht eine klare Abhängigkeit der Frosttoleranz zum Zucker-, Prolin- und Flavonoidgehalt, sowie zwischen der Stärke der Heterosis in Frosttoleranz und Metabolitgehalten. GCMS-Messungen bestätigen diese Ergebnisse. Es wurden 40 Metabolite detektiert, von denen viele signifikant mit der Frosttoleranz korrelieren und/oder deren Heterosis mit der Heterosis der LT50 korreliert. Sechs dieser Stoffe sind wichtige Komponenten des Citratzyklus, was auf eine Rolle von Teilen des Zyklus in der Heterosis der Frosttoleranz und eine Veränderung seiner Flussraten hindeutet. / We investigated heterosis in freezing tolerance of 24 reciprocal Arabidopsis-crosses with C24 and Col-0. The underlying genetic mechanisms of Heterosis, the enhancement of F1-hybrids in comparison to their homozygous parents, are unknown. Different mechanisms such as dominance, overdominance or epistasis are suggested. Parental freezing tolerance (LT50) was shown to correlate with the original habitat temperature. Besides the LT50, proline and sugar contents (glc, fru, suc, raf) have been measured on non-acclimated and cold-acclimated plants. Metabolite profiling and flavonoid measurements revealed significant stronger heterosis in C24- than in Col-crosses. Heterosis increases after cold acclimation. Freezing tolerance clearly correlate with the contents of sugars, proline and several flavonols, as well as the strength of heterosis in freezing tolerance with the metabolite content. GCMS-measurement confirmed these results. Fourty metabolites, of which many significantly correlate with LT50 and/or with heterosis in metabolite content and in LT50, were found. Six of these are important compounds in the TCA-cycle. Changes in flux rates of the TCA-cycle could be connected to Heterosis for the first time. Negative correlation between Heterosis in freezing tolerance and metabolite accumulation, points to a role of parts of the cycle in crosses and to a change of flux rates.

Page generated in 0.0633 seconds