• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimiza??o em comit?s de classificadores: uma abordagem baseada em filtro para sele??o de subconjuntos de atributos

Santana, Laura Emmanuella Alves dos Santos 02 February 2012 (has links)
Made available in DSpace on 2014-12-17T15:46:59Z (GMT). No. of bitstreams: 1 LauraEASS_TESE.pdf: 2447411 bytes, checksum: 3e442431965058383423623bc7751de0 (MD5) Previous issue date: 2012-02-02 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria / A aplica??o tradicional da sele??o de atributos em diversas ?reas como minera??o de dados, aprendizado de m?quina e reconhecimento de padr?es visa melhorar a acur?cia dos modelos constru?dos com a base de dados, ao retirar dados ruidosos, redundantes ou irrelevantes, e diminuir o custo computacional do modelo, ao encontrar um subconjunto representativo dos dados que diminua sua dimensionalidade sem perda de desempenho. Com o desenvolvimento das pesquisas com comit?s de classificadores e a verifica??o de que esse tipo de modelo possui melhor desempenho que os modelos individuais, dado que os classificadores base sejam diversos, surge uma nova aplica??o ?s pesquisas com sele??o de atributos, que ? a de encontrar subconjuntos diversos de atributos para a constru??o dos classificadores base de comit?s de classificadores. O presente trabalho prop?e uma abordagem que maximiza a diversidade de comit?s de classificadores atrav?s da sele??o de subconjuntos de atributos utilizando um modelo independente do algoritmo de aprendizagem e de baixo custo computacional. Isso ? feito utilizando metaheur?sticas bioinspiradas com crit?rios de avalia??o baseados em filtro

Page generated in 0.07 seconds