• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Materials Approaches for Transparent Electronics

Iheomamere, Chukwudi E. 12 1900 (has links)
This dissertation tested the hypothesis that energy transferred from a plasma or plume can be used to optimize the structure, chemistry, topography, optical and electrical properties of pulsed laser deposited and sputtered thin-films of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics devices fabricated without substrate heating or with low substrate heating. Thus, the approach would be compatible with low-temperature, flexible/bendable substrates. Proof of this concept was demonstrated by first optimizing the processing-structure-properties correlations then showing switching from accumulation to inversion in ITO/a-BOxNy/ZnO and ITO/a-BOxNy/2H-WS2 transparent MIS capacitors fabricated using the stated processes. The growth processes involved the optimization of the individual materials followed by growing the multilayer stacks to form MIS structures. ZnO was selected because of its wide bandgap that is transparent over the visible range, WS2 was selected because in few-layer form it is transparent, and a-BOxNy was used as the gate insulator because of its reported atomic smoothness and low dangling bond concentration. The measured semiconductor-insulator interfacial trap properties fall in the range reported in the literature for SiO2/Si MOS structures. X-ray photoelectron spectroscopy (XPS), Hall, photoluminescence, UV-Vis absorption, and X-ray diffraction (XRD) measurements investigated the low-temperature synthesis of ZnO. All films are nanocrystalline with the (002) XRD planes becoming more prominent in films grown with lower RF power or higher pressure. Low power or high chamber pressure during RF magnetron sputtering resulted in a slower growth rate and lower energetic conditions at the substrate. Stoichiometry improved with RF power. The measurements show a decrease in carrier concentration from 6.9×1019 cm-3 to 1.4×1019 cm-3 as power increased from 40 W to 120 W, and an increase in carrier concentration from 2.6×1019 cm-3 to 8.6×1019 cm-3 as the deposition pressure increased from 3 to 9 mTorr. The data indicates that in the range of conditions used, bonding, stoichiometry, and film formation are governed by energy transfer from the plasma to the growing film. XPS characterizations, electrical measurements, and atomic force microscopy (AFM) measurements reveal an increase in oxygen concentration, improved dielectric breakdown, and improved surface topography in a-BOxNy films as deposition pressure increased. The maximum breakdown strength obtained was ~8 MVcm-1, which is comparable to a-BN. Metal-Insulator-Metal (MIM) structures of a-BOxNy grown at 10 and 15 mTorr suggest a combination of field-enhanced Schottky emission and Frenkel-Poole emission are likely transport mechanisms in a-BOxNy. In comparison, better fitted data was gotten for field enhanced Schottky emission which suggests the more dominant mechanism. The static dielectric constant range is 3.26 – 3.58 for 10 and 15 mTorr films. Spectroscopic ellipsometry and UV-Vis spectroscopy measured a bandgap of 3.9 eV for 15 mTorr grown a-BOxNy. 2H-WS2 films were grown on both quartz and a-BOxNy which revealed that the XRD (002) planes became more prominent as substrate temperature increased to 400 oC. AFM shows nano-grains at lower growth pressure. Increasing the growth pressure to 1 Torr resulted in the formation of larger particles. XPS chemical analysis reveals improved sulfur to tungsten ratios as pressure increased. Sulfur deficient films were n-type, whereas sulfur rich conditions produced p-type films. Frequency dependent C-V and G-V measurements revealed an interface trap concentration (Nit) of 7.3×1010 cm-2 and interface state density (Nss) of 7.5×1012 eV-1cm-2 for the transparent ITO/a-BOxNy/ZnO MIS structures, and approximately 2 V was required to switch the a-BOxNy/ZnO interface from accumulation to inversion. Using 2H-WS2 as the channel material, the ITO/a-BOxNy/2H-WS2 required approximately 4 V to switch from inversion to accumulation in both n and p-channel MIS structures. Interface trap concentrations (Nit) of 1.6×1012 cm-2 and 3.2×1010 cm-2, and interface state densities (Nss) of 1.6×1012 eV-1cm-2 and 6.5×1012 eV-1cm-2 were calculated for n and p-channel 2H-WS2 MIS structures, respectively. The data from these studies validate the hypothesis and demonstrate the potential of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics.
2

Estudo de transistores orgânicos por espectroscopia vibracional não linear e microscopia por modulação de carga / Study of organic transistors by nonlinear vibrational spectroscopy and charge modulation microscopy

Gomes, Douglas José Correia 13 April 2018 (has links)
Esta Tese aborda o estudo de transistores por efeito de campo orgânicos (OFETs do inglês, Organic Feld-Effect Transistors). Entender o comportamento da carga acumulada no canal do OFET, a qual é responsável pelo processo de condução elétrica no dispositivo, é de grande importância para ajudar a melhorar sua eficiência ou a propor um modelo teórico que descreva o comportamento do transistor em todos os seus regimes de operação. Vários trabalhos na literatura investigam o campo elétrico na camada semicondutora do transistor (ao longo do canal) gerado pela acumulação de cargas, porém nenhum investiga o campo na camada dielétrica de OFETs, que é diretamente proporcional à carga acumulada no canal. Investigou-se inicialmente o campo elétrico na camada dielétrica do dispositivo por meio da espectroscopia vibracional por Geração de Soma de Frequências (espectroscopia SFG do inglês, Sum-Frequency Generation). Espectros SFG obtidos nos dispositivos polarizados exibiram uma banda em ~1720 cm-1, devido ao grupo carbonila da camada dielétrica orgânica (PMMA – poli(metil metacrilato)), cuja a amplitude foi proporcional à voltagem de porta aplicada, indicando que esses grupos polares foram orientados sob ação do intenso campo elétrico no dispositivo. Esse sinal SFG induzido pelo campo pode ser devido a duas contribuições, um termo não linear de segunda ordem (devido à reorientação molecular) e outro de terceira ordem (interação entre os campos ópticos e o campo estático no volume do material). Observamos uma redução quase completa do sinal SFG em altas temperaturas (próximas da Tg do polímero dielétrico), indicando que o mecanismo de reorientação molecular é o responsável pelo sinal SFG gerado. Foram realizadas então medidas preliminares de microscopia SFG para mapear esse sinal SFG ao longo do canal de OFETs a base dos polímeros N2200 (semicondutor) e PMMA (dielétrico). Os resultados conseguem demonstrar a variação da densidade de carga acumulada no canal quando o dispositivo está polarizado e próximo à saturação. Usando Microscopia por Modulação de Carga (microscopia CMM do inglês, Charge Modulation Microscopy), que é outro método não invasivo para investigar a acumulação de cargas em um dispositivo operando, mapeamos a distribuição de carga no canal desses OFETs com alta resolução espacial (sub-micrométrica). Além disso, uma simulação da densidade de carga esperada e dos perfis de CMM foi realizada usando um modelo ambipolar para OFETs. Com base nessas simulações, propusemos uma modulação de onda quadrada do OFET, que permite uma comparação mais direta dos perfis de CMM com o perfil de densidade de carga ao longo do canal do transistor. Usando o esquema proposto, esses perfis foram medidos e comparados com o esperado com base no modelo ambipolar. Em geral os perfis de densidade de carga obtidos concordam bem com o modelo, usando apenas um único parâmetro global ajustável, exceto muito próximo do eletrodo de dreno e no regime de saturação profunda, quando os experimentos apresentam um artefato devido à eletro-absorção e não permitem uma comparação precisa com o modelo. Portanto, espera-se que esta Tese tenha contribuído para o avanço de técnicas de caracterização da distribuição de carga em OFETs, e assim melhorar o entendimento de seus mecanismos de funcionamento. / This Thesis deals with the study of Organic Field Effect Transistors (OFETs). Understanding the behavior of the accumulated charge along the OFET channel, which is responsible for the electrical conduction process in the device, is of great importance for improving its efficiency or proposing a theoretical model that describes the behavior of the transistor in all its operating regimes. Several studies in the literature investigate the electric field in the semiconductor layer of the transistor (along the channel) generated by the charge accumulation, but none investigates the field in the OFET dielectric layer, which is directly proportional to the charge accumulated in the channel. The electric field in the dielectric layer of the device was initially investigated by Sum-Frequency Generation (SFG) vibrational spectroscopy. SFG spectra obtained in the polarized devices exhibited a band at ~ 1720 cm-1, due to the carbonyl group of the organic dielectric layer (PMMA - poly (methyl methacrylate)), whose amplitude was proportional to the applied gate voltage, indicating that these polar groups were oriented by the intense electric field in the device. This field-induced SFG signal may be due to two contributions, a second order non-linear term (due to molecular reorientation) and a third order term (interaction between the optical fields and the static field in the material volume). We observed an almost complete reduction of the SFG signal at high temperatures (close to the Tg of the dielectric polymer), indicating that the molecular reorientation mechanism is responsible for the generated SFG signal. Preliminary SFG microscopy measurements were performed to map this SFG signal along the channel of OFET fabricated with N2200 (semiconductor) and PMMA (dielectric) polymers. The results demonstrate the variation of the accumulated charge density along the channel when the device is polarized and close to saturation. Using Charge Modulation Microscopy (CMM), which is another noninvasive method to investigate the accumulation of charges in an operating device, we mapped the charge distribution in the channel of these OFETs with high spatial resolution (sub-micrometer). In addition, a simulation of the expected charge density and CMM profiles was performed using an ambipolar model for OFETs. Based on these simulations, we proposed a square-wave modulation of the OFET, which allows a more direct comparison of the CMM profiles with the charge density profile. Using the proposed scheme, these profiles along the transistor channel were measured and compared with those expected from the ambipolar model. In general, the obtained charge density profiles agree well with the model, using only a single global adjustable parameter, except very close to the drain electrode and in the deep saturation regime, when the experiments have an artifact due to the electro-absorption and do not allow a precise comparison with the model. Therefore, it is expected that this Thesis has contributed to the advancement of techniques to characterize the charge distribution in OFETs, and thus improve the understanding of its operating mechanisms. Keywords: Field-effect transistors. Organic electronics. Nonlinear optics. Sum-frequency generation. Polarization of dielectrics. Charge modulation microscopy. Metal-insulator-semiconductor capacitor.

Page generated in 0.0709 seconds