• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Aluminum Matrix Composites by Squeeze Casting

Tu, Zhiqiang 20 May 2020 (has links)
Rapid modern technological changes and improvements bring great motivations in advanced material designs and fabrications. In this context, metal matrix composites, as an emerging material category, have undergone great developments over the past 50 years. Their primary applications, such as automotive, aerospace and military industries, require materials with increasingly strict specifications, especially high stiffness, lightweight and superior strength. For these advanced applications, carbon fiber reinforced aluminum matrix composites have proven their enormous potential where outstanding machinability, engineering reliability and economy efficiency are vital priorities. To contribute in the understanding and development of carbon fiber reinforced aluminum matrix composites, this study focuses on composite fabrication, mechanical testing and physical property modelling. The composites are fabricated by squeeze casting. Plain weave carbon fiber (AS4 Hexcel) is used as reinforcement, while aluminum alloy 6061 is used as matrix. The improvement of the squeeze casting fabrication process is focused on reducing leakage while combining thermal expansion pressure with post-processing pressing. Three different fiber volume fractions are investigated to achieve optimum mechanical properties. Piston-on-ring (POR) bend tests are used to measure the biaxial flexural stiffness and fracture strength on disc samples. The stress-strain curves and fracture surfaces reveal the effect of fiber-matrix interface bonding on composite bend behaviour. The composites achieved up to 11.6%, 248.3% and 90.1% increase in flexural modulus, strain hardening modulus and yield strength as compared with the unreinforced aluminum alloy control group, respectively. Analytical modelling and finite element modelling are used to comparatively characterise and verify the composite effective flexural modulus and strength. Specifically, they allowed iii evaluating how far the experimental results deviate from idealized assumptions of the models, which provides an insight into the composite sample quality, particularly at fiber-matrix interfaces. Overall, the models agree well with experimental results in identifying an improvement in flexural modulus up to a carbon fiber volume fraction of 4.81vol%. However, beyond a fiber content of 3.74vol%, there is risk of deterioration of mechanical properties, particularly the strength. This is because higher carbon fiber volume fractions restrict the infiltration and wetting of carbon fibre by the liquid, potentially leading to poor fiber-matrix interface bonding. It is shown that higher thermal expansion pressures and subsequent post-processing pressing can overcome this challenge at higher carbon fiber volume contents by reducing fiber-aluminum contact angle, improving infiltration, reducing defects such as porosity, and overall improving fiber-matrix bonding.
2

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE / Contribution on the topic COMPOSITE MATERIALS - MATERIAL COMPOUNDS : Status quo and research approaches

Nestler, Daisy Julia 15 April 2014 (has links) (PDF)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
3

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE: Status quo und Forschungsansätze

Nestler, Daisy Julia 04 November 2013 (has links)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
4

Study on Development of Aluminium Based Metal Matrix Composites Using Friction Stir Processing

Dixit, Saurabh January 2015 (has links) (PDF)
Composite materials are multifunctional materials having unique mechanical and physical properties that can be tailored to meet the requirements of a particular application. Aluminium based Metal Matrix Composites (MMC) always draw the attention of researchers due to its unique characteristics such as better strength to weight ratio, low wear rate and lower thermal expansion coefficient. There are various methods for manufacturing of MMC that can be grouped into two major categories: (a) Solid sate method such as powder metallurgy, co-extrusion and (b) Liquid state method such as stir casting. All of these methods for production of composites have their own advantages and disadvantages. Porosity, and poor wettabilty of dispersoids with matrix are few common problems in solid state route. Formations of undesirable phases, and segregation of dispersoids are common problems in liquid state processing route. Friction Stir Processing (FSP) technique, a derivative technique of Friction Stir Welding (FSW) has emerged as a major solid state technique to produce composites. However, there are several challenges associated with it. Most of the past work has been on limited volume of material. Researchers have tried to combine FSP technique with powder metallurgy technique to overcome aforementioned challenges associated with these techniques. Where on one hand, powder metallurgy ensures the uniform dispersion of dispersoids in the matrix, on the other hand FSP on sintered billet removes the pores and other defects. The combination of these two techniques leads to a more controlled and uniform properties. However, at the same time, it can be noted that the combination of these processes is tedious and time consuming. In this study, an attempt is made to achieve bulk dispersion of a second phase into an aluminium matrix using FSP technique. A 5 mm thickness composite is attempted in this work. To achieve this objective proper and uniform mixing of the particles is required. To achieve this, new tools and processing steps are to be designed and analyzed for a better understanding of material flow around the tool pin and the effect of different tool pin geometries on the material flow. Keeping this objective, a detailed study is carried out on material flow during FSW process using aluminium as base metal. A marker material technique is employed to understand the material flow. A strip of copper is selected as the marker material. Material flow can be qualitatively predicted during the process by observing the distribution of marker material in the weld nugget. Three different kinds of tools, each with an additional feature are designed for this purpose (a) Plain frustum shape pin (b) threaded frustum shape pin and, (c) Triflute pin . The material flow due to the plain pin tool can be considered as primary flow during the FSP. Three different kinds of flow zones are observed in the weld nugget in the case of plain tool. It is found that higher numbers of geometrical features (threads and flutes) not only enhance the material flow but also lead to the additional flow currents and more thorough and uniform mixing. A closer study of the weld nugget revealed that the copper marker particles and the matrix were diffusion bonded. Based on the reaction time available and temperature in the weld nugget a diffusion layer thickness of 4 nm is expected between copper and aluminium. However, the diffusion layer thickness was found to be 3.5 μm, which is nearly three orders of magnitude higher. This can be attributed to the enhancement of diffusion due to simultaneous application of strain and temperature. As copper is soluble in the aluminium, an insoluble marker material tin was used for study of flow in the weld nugget. However, the effect of insolubility and lower melting point had some unexpected effect on the processing loads. The normal load during steady state tool traverse in conventional butt-welding is found to be around 2.7 KN while it attains an average value of 14.7 KN when a thin strip of tin is sandwiched between these plates. However, a drop in the torque of around 13.12 NM is observed when tin was sandwiched between the plates as compared to the case when no insert was present. On closer examination of the flow behavior, it is seen that the tin melted, squeezed out and formed a lubricious layer between the tool and the work piece. This reduced the torque significantly and a concomitant drop in temperature was observed. The interaction between the tool and the colder aluminium work piece would thus result in much larger normal and transverse load Based on the expected and unexpected results of flow pattern in the weld nugget, a new FSP tool and processing steps were developed to manufacture MMC. Tungsten, which is the highest melting point metal is chosen as the dispersing phase. Further, as tungsten has high melting point, the kinetics of intermetallics formation would be low for the given FSP processing time at the processing temperature. This would lead to tungsten acting as a more ductile strengthening particle, which is expected to should give some unique characteristics to the MMC. Tungsten powder with an average diameter of 414 nm was dispersed in aluminum matrix with three different proportions after optimizing all the process parameters. It is noted that the mechanical properties are significantly influenced as the tungsten content in the matrix increases. In practice, MMC shows relatively low ductility compared to the parent metal. However in this case the composite exhibited even better ductility than the as received aluminium plates (rolled sheets). The composite showed around 129 MPa of yield strength along with 21% ductility when tungsten content is 3.8 at.%. It is also found that the reaction between aluminum and tungsten occurs during the processing and form the Al12W intermetallic phase. Though the formation of this intermetallic phase was unlikely due to the low temperature and short time available during the process, the reaction kinetics between aluminium and tungsten would have been enhanced due to the simultaneous application of strain and temperature. Given that the metal-metal, tungsten-aluminium composite produced by FSP had unique properties and also formed intermetallics, a study on incorporation of a highly insoluble material, graphite was carried out. Further graphite with its own unique properties and very low wettability with aluminium could possibly impart completely different properties to the system. Past work on graphite aluminium composites produced by other methods did not show promise. As FSP imposes high strains at relatively high flow stresses on the processed material, it was seen that the graphite got sheared to form multi-layer graphene composites with the aluminium. The graphene sheets are formed by mechanical exfoliation of graphite particles during its incorporation in the matrix. The formation of graphene was confirmed after separating the graphite from the processed zone and TEM studies of the composite. It is seen that most of the graphite got converted into multilayer graphene. This aluminium-graphene composite exhibited enhanced ductility and UTS. As received aluminium plates exhibited only 11% ductility and around 100 MPa of UTS while this composite exhibited around 26 % ductility and 147 MPa of UTS. However, there is only a slight improvement in yield strength of this composite.

Page generated in 0.0928 seconds