• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal Nanowire Networks as Transparent Electrode for Small-Molecule Organic Solar Cells

Sachse, Christoph 13 February 2015 (has links) (PDF)
This work focuses on the development of metal nanowire networks for the use as transparent electrodes in small-molecule organic solar cells. Broad adoption of organic solar cells requires inexpensive roll-to-roll processing on flexible, lightweight substrates. Under these conditions, traditional metal oxide electrodes suffer from significant drawbacks such as brittleness and cost. In contrast, metal nanowire networks provide properties more suitable for high-throughput processing and thus, are investigated here as an alternative. They combine the high-conductivity of metals with the advantage of optical transparency found in aperture-structured networks. The process chain from nanowire deposition to cell integration is examined with silver and copper nanowire material. Two techniques are presented for deposition. While dip-coating is investigated in detail, including a discussion of the most important parameters, spray-coating is demonstrated as an alternative for large area applications. Since the nanowires are barely conductive after deposition, post-treatment steps are used to achieve a performance comparable to standard metal oxide films such as tin-doped indium oxide (ITO). The inherent roughness of nanowire electrodes is addressed by using a conductive polymer as a planarization layer. On top of optimized electrodes, small-molecule organic solar cells are deposited with a UHV thermal evaporation process. Completed cells are tested and performance is found to be comparable to the used standard transparent electrodes. Additionally, a new approach to achieve aligned nanowire network structures is demonstrated. The additional degree of order is used to illustrate optical effects of silver nanowire networks. Furthermore, these aligned networks exhibit anisotropic conductivity. This effect is discussed and simulations are performed to reproduce the observations. The freedom of network design is used to achieve superior conductivity compared to standard random structures. / Im Fokus dieser Arbeit steht die Entwicklung von Metall-Nanodraht-Netzwerken für die Anwendung in transparenten Elektroden für organische Solarzellen. Eine breite Verwendung von organischen Solarzellen setzt eine kostengünstige Rolle-zu-Rolle Fertigung auf flexiblen und leichten Substraten voraus. Unter diesen Bedingungen leiden traditionell verwendete Metalloxid-Elektroden unter erheblichen Nachteilen, wie Brüchigkeit und Preis. Im Gegensatz dazu zeigen Metall-Nanodraht-Netzwerke deutlich bessere Eigenschaften und werden deshalb hier als alternative Elektroden untersucht. Die Netzwerke kombinieren die hohe Leitfähigkeit von Metallen mit einer hohen Transmittivität in Folge der netzwerkbedingten Apertur. Die Prozesskette von der Nanodraht-Abscheidung bis zur Zellintegration wird für Silber- und Kupferdrähte untersucht. Zwei Techniken für die Abscheidung werden präsentiert. Ein Tauchverfahren wird detailliert untersucht und die zugehörigen Parameter werden diskutiert. Für große Flächen wird eine Sprühbeschichtung als Alternative aufgezeigt. Da die abgeschiedenen Netzwerke eine schlechte Leitfähigkeit besitzen, sind Nachprozessierungsschritte notwendig um gute Leitfähigkeiten im Bereich von üblichen Elektroden wie Indium-Zinn-Oxid (ITO) zu erreichen. Die Rauheit der Nanodraht-Elektrode wird mit Hilfe einer glättenden Polymerschicht behoben. Auf den optimierten Elektroden werden organische Solarzellen aus kleinen Molekülen in einem thermischen UHV-Prozess abgeschieden. Die Zellen werden getestet und zeigen Eigenschaften vergleichbar zu üblichen transparenten Elektroden. Zusätzlich wird ein neuer Ansatz zur Herstellung von ausgerichteten Netzwerkstrukturen demonstriert. Der zusätzliche Grad an Ordnung wird für die Untersuchung von optischen Effekten an Silberdraht-Netzwerken genutzt. Weiterhin zeigen diese ausgerichteten Netzwerke eine anisotrope Leitfähigkeit. Dieser Effekt wird diskutiert und Simulationen werden durchgeführt, um die Beobachtungen zu verifizieren. Die Freiheit in der Netzwerkstruktur wird für eine Verbesserung der Leitfähigkeit genutzt.
2

Metal Nanowire Networks as Transparent Electrode for Small-Molecule Organic Solar Cells

Sachse, Christoph 24 October 2014 (has links)
This work focuses on the development of metal nanowire networks for the use as transparent electrodes in small-molecule organic solar cells. Broad adoption of organic solar cells requires inexpensive roll-to-roll processing on flexible, lightweight substrates. Under these conditions, traditional metal oxide electrodes suffer from significant drawbacks such as brittleness and cost. In contrast, metal nanowire networks provide properties more suitable for high-throughput processing and thus, are investigated here as an alternative. They combine the high-conductivity of metals with the advantage of optical transparency found in aperture-structured networks. The process chain from nanowire deposition to cell integration is examined with silver and copper nanowire material. Two techniques are presented for deposition. While dip-coating is investigated in detail, including a discussion of the most important parameters, spray-coating is demonstrated as an alternative for large area applications. Since the nanowires are barely conductive after deposition, post-treatment steps are used to achieve a performance comparable to standard metal oxide films such as tin-doped indium oxide (ITO). The inherent roughness of nanowire electrodes is addressed by using a conductive polymer as a planarization layer. On top of optimized electrodes, small-molecule organic solar cells are deposited with a UHV thermal evaporation process. Completed cells are tested and performance is found to be comparable to the used standard transparent electrodes. Additionally, a new approach to achieve aligned nanowire network structures is demonstrated. The additional degree of order is used to illustrate optical effects of silver nanowire networks. Furthermore, these aligned networks exhibit anisotropic conductivity. This effect is discussed and simulations are performed to reproduce the observations. The freedom of network design is used to achieve superior conductivity compared to standard random structures. / Im Fokus dieser Arbeit steht die Entwicklung von Metall-Nanodraht-Netzwerken für die Anwendung in transparenten Elektroden für organische Solarzellen. Eine breite Verwendung von organischen Solarzellen setzt eine kostengünstige Rolle-zu-Rolle Fertigung auf flexiblen und leichten Substraten voraus. Unter diesen Bedingungen leiden traditionell verwendete Metalloxid-Elektroden unter erheblichen Nachteilen, wie Brüchigkeit und Preis. Im Gegensatz dazu zeigen Metall-Nanodraht-Netzwerke deutlich bessere Eigenschaften und werden deshalb hier als alternative Elektroden untersucht. Die Netzwerke kombinieren die hohe Leitfähigkeit von Metallen mit einer hohen Transmittivität in Folge der netzwerkbedingten Apertur. Die Prozesskette von der Nanodraht-Abscheidung bis zur Zellintegration wird für Silber- und Kupferdrähte untersucht. Zwei Techniken für die Abscheidung werden präsentiert. Ein Tauchverfahren wird detailliert untersucht und die zugehörigen Parameter werden diskutiert. Für große Flächen wird eine Sprühbeschichtung als Alternative aufgezeigt. Da die abgeschiedenen Netzwerke eine schlechte Leitfähigkeit besitzen, sind Nachprozessierungsschritte notwendig um gute Leitfähigkeiten im Bereich von üblichen Elektroden wie Indium-Zinn-Oxid (ITO) zu erreichen. Die Rauheit der Nanodraht-Elektrode wird mit Hilfe einer glättenden Polymerschicht behoben. Auf den optimierten Elektroden werden organische Solarzellen aus kleinen Molekülen in einem thermischen UHV-Prozess abgeschieden. Die Zellen werden getestet und zeigen Eigenschaften vergleichbar zu üblichen transparenten Elektroden. Zusätzlich wird ein neuer Ansatz zur Herstellung von ausgerichteten Netzwerkstrukturen demonstriert. Der zusätzliche Grad an Ordnung wird für die Untersuchung von optischen Effekten an Silberdraht-Netzwerken genutzt. Weiterhin zeigen diese ausgerichteten Netzwerke eine anisotrope Leitfähigkeit. Dieser Effekt wird diskutiert und Simulationen werden durchgeführt, um die Beobachtungen zu verifizieren. Die Freiheit in der Netzwerkstruktur wird für eine Verbesserung der Leitfähigkeit genutzt.
3

Investigation of Structural and Electronic Aspects of Ultrathin Metal Nanowires

Roy, Ahin January 2015 (has links) (PDF)
The constant trend of device miniaturization along with ever-growing list of unusual behaviour of nanoscale materials has fuelled the recent research in fabrication and applications of ultrathin (~2 nm diameter) nanowires. Although semiconductor nanowires of this dimension is well-researched, molecular-scale single-crystalline metal nanowires have not been addressed in details. Such single crystalline Au nanowires are formed by oriented attachment of Au nanoparticles along [111] direction. A very low concentration of extended defects in these wires result in a high electrical conductivity, making them ideal for nanoscale interconnects. Other metal nanowires, e.g. Ag and Cu, have very low absorption co-efficient useful for fabrication of transparent conducting films. On the other hand, because of the reduced dimensions, there exists a tantalizing possibility of dominating quantum effects leading to their application in sensing and actuation. Also, speaking in terms of atomic structure, these systems suffer from intense surface stress, and the atomistic picture can be drastically different from bulk. Thus, although a myriad of applications are possible with ultrathin metal nanowires, a rigorous systematic knowledge of their atomic and electronic structure is not yet available. This thesis is the first one to model such computationally demanding systems with emphasis on their possible applications. In this thesis, we have explored various structural and electronic aspects of one-dimensional ultrathin nanowires with ab initio density functional theory coupled with experiments. The merit of Au nanowires has been tested as nanoscale interconnects. From atomistic point of view, these FCC Au nanowires exhibit an intriguing relaxation mechanism, which has been explored by both theory and experiment. The primary factor governing the relaxation mechanism was found to be the anisotropic surface stress of the bounding facets, and it is extended to explain the relaxation of other metallic nanowires. Our studies suggest that AuNWs of this dimension show semiconductor-like sensitivity towards small chemical analytes and can be used as nanoscale sensors. Also, we have found that further reducing the diameter of the Au-nanowires leads to opening of a band gap.

Page generated in 0.0531 seconds