Spelling suggestions: "subject:"metal organic"" "subject:"fetal organic""
111 |
Studies on Hydrogen-Storage Properties of Palladium Based Nanomaterials / パラジウム基ナノ材料の水素吸蔵特性に関する研究Li, Guangqin 25 November 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18641号 / 理博第4020号 / 新制||理||1579(附属図書館) / 31555 / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 吉村 一良, 准教授 前里 光彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
112 |
Step-by-Step Fabrication of Crystalline Oriented Metal-Organic Framework Thin Films / 結晶配向性の多孔性配位高分子薄膜の逐次構築Haraguchi, Tomoyuki 25 July 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19916号 / 理博第4216号 / 新制||理||1605(附属図書館) / 33002 / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 島川 祐一, 教授 有賀 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
113 |
The Developments of Novel Nanomaterials with Non-Noble Metal Elements RuxCu1-x Solid-Solution Nanoparticles and MgO Nanoparticles/Metal-Organic Frameworks― / 卑金属元素を利用した新規機能性無機ナノ材料の創出 ルテニウム-銅固溶体ナノ粒子及び酸化マグネシウムナノ粒子/多孔性金属錯体―Bo, Huang 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20603号 / 理博第4318号 / 新制||理||1620(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 竹腰 清乃理, 教授 吉村 一良 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
114 |
Synthesis and Characterization of Cobalt-Based Coordination Complexes with Various Organic LinkersHasan, Md Faruque 24 July 2018 (has links)
No description available.
|
115 |
Structural Design and Catalytic Applications of Homogenous and Heterogeneous Organometallic Lewis AcidsReiner, Benjamin Russell January 2018 (has links)
No description available.
|
116 |
Halide Directed Synthesis of Indium Derived Metal-Organic FrameworksSpringer, Sarah E. 21 August 2018 (has links)
No description available.
|
117 |
EFFECT OF HISTORY ON THE BINARY ADSORPTION EQUILIBRIA OF ALUMINIUM TEREPHTHALATE (MIL-53(Al))Kara, Ufuoma Israel, 19 September 2018 (has links)
No description available.
|
118 |
Photoinduced Charge Carrier Generation and Ground-state Charge Transport in Metal-Organic Frameworks For Energy ConversionLi, Xinlin 01 December 2022 (has links) (PDF)
Metal-Organic Frameworks (MOFs), a class of porous materials realized via reticular construction of a plethora of organic linkers and metal nodes, have emerged as excellent candidates for light-harvesting compositions (LHC), photo or electrocatalysis. This is due to their ability to organize chromophores and metal nodes with desired functionalities, and remarkable porosity that allows efficient mass transfer of reactants and electrolytes. Recent studies have shown intriguing delocalized excited state of the orderly organized pigments in MOFs. Furthermore, the accessible pores/channels allow it to host complementary optical/redox active species within the frameworks by means of de novo or postsynthetic functionalization, as a manner for MOF compositions to integrate functionalities beyond photosensitizer, such as photo/electrocatalytic sites. In such multi-component assemblies, profound understanding of charge transfer and separation process is crucial to make the designed LHC efficient. Therefore, we could adopt chromophoric MOFs as a scaffold to systematically investigate photoinduced charge transfer by installing judiciously selected redox moieties into MOFs, whose unique electronic properties could define distinct electronic interplay with MOFs. From an aspect of further applications, photo-generated electrons can be utilized more efficiently by an external electric field applied on MOF films, which prolongs the charge-separation lifetime. For this purpose, sufficient electrical conductivity is necessary to allow charges delivered across the MOF film. Considering a large energy mismatch between the majority of traditional metal nodes including metal oxo clusters and carboxylic based struts, charge transport is defined by a slow hopping process, which hinders the harvesting of relatively short-lived separated charges. Hence, developing neoteric linkage chemistry is critically needed to overcome the charge-transport challenge.Keeping these points in mind, the scope of this dissertation mainly focuses on unraveling the fundamental principles of photoinduced charge transfer and separation, ground-state charge transport boosted by nontraditional coordination chemistry and incorporation of complementary redox species, and their substantial correlation with MOF-based photocatalysis, electrocatalysis and photoelectrocatalysis. The first chapter lays the foundational knowledge regarding generic properties (chemical and physical) of MOFs, and adopted typical postsynthetic functionalization method, namely, solvent-assisted ligand incorporation (SALI), and other physical processes including photoinduced charge and energy transfer among components within MOFs, and mechanism of electron transport, that has so far been understood, in MOFs driven by an external electric field and commonly used approaches to measure that. Chapter two and three reveal the rule to control photoinduced charge transfer in MOF compositions prepared by the installation of a series of zinc porphyrins possessing gradient excited-state and frontier-orbital energy that can define distinct charge-transfer driving force into the mesopore of a photosensitizing MOF, NU-1000. These compositions show potential for their utilization as artificial light-harvesting assemblies. Chapter four highlights new design for solid porous CO2 reduction catalysts realized by introducing cobalt phthalocyanine into NU-1000. Importantly, we interpreted the catalytic activity from the aspect of charge transport efficiency, by comparing with catalysts constituted by NU-1000 and different molecular catalysts. To harvest the photo-generated electrons, an external electric field can be applied on MOF films deposited on transparent electrodes under photoexcitation, for which sufficient electrical conductivity is a must. Therefore, in chapter five, a new semiconducting coordination polymer framework was developed by employing a novel carbodithioate group for the linkage with nickel(II) that extends in three dimensions, which shows enhanced, electrical conductivity (i.e. 10-6 – 10-7 S cm-1) in contrast to traditional carboxylate-based MOFs due to a more delocalized electronic feature of the carbodithioate-nickel cluster. More importantly, its unique electronic properties, especially a long-lived charge-separation state captured by transient-absorption technique, could alleviate the compromise between electrical conductivity and charge separation (resulted from bandgap) of light-harvesting material. We then extend this binding group to chromium(III), as introduced in chapter 6, leading to a paramagnetic 3D coordination polymer with metallic conductivity as opposed to its nickel counterpart.
|
119 |
The Synthesis of Magnesium Metal-Organic Framework Film for Ion Transport in Magnesium BatteryProstko, Gabriela January 2022 (has links)
Thesis advisor: Dunwei Wang / Metal organic frameworks (MOFs) are a class of compounds that show promising potential for a variety of applications due to their uniformity, highly porous structure, lack of dead volume, and fine-tunability. One of these significant applications is in selective ion transport, which makes MOF films a uniquely good separatory material for dual-electrolyte setups, such as those being investigated with Mg-Br batteries. This research has important environmental and industrial ramifications, considering the various drawbacks associated with commercially available batteries such as the lithium-ion battery. The MOF investigated was Mg-MOF-74, which showed promising selective Mg2+ transport abilities. Both Mg-MOF-74 powder and films were synthesized via a vapor-assisted conversion process to maximize efficiency. To characterize the MOF, XRD and SEM imaging was used. This allowed us to gain a nuanced understanding of the material and its properties for further applications. / Thesis (BA) — Boston College, 2022. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Chemistry.
|
120 |
Understanding the Impact of High Aspect Ratio Nanoparticles on Desalination Membrane PerformanceSmith, Ethan D. 16 April 2020 (has links)
Access to clean water is one of the world's foremost challenges that has been addressed on a large scale by membrane-based separation processes for the last six decades. Commercial membrane technology within one operation, reverse osmosis, has remained consistent since the late 1970s, however within the last two decades, access to nanotechnology has created a realm of study involving thin film nanocomposite (TFN) membranes, in which nanoparticles are incorporated into existing membrane designs. Desirable properties of the nanoparticles may positively impact qualities of the membrane like performance, anti-fouling behavior, and physical strength. In the present work, two types of nanoparticles have been evaluated for their potential as TFN additives: cellulose nanocrystals (CNCs) and metal-organic framework (MOF) nanorods. CNCs were chosen due to their high aspect ratios, mechanical strength, and potential for surface functionalization. MOF nanorods are also of interest given their aspect ratios and potential for functionalization, but they also possess defined pores, the sizes of which may be tuned with post-synthetic modification. Both CNCs and MOF nanorods were incorporated into TFN membranes via interfacial polymerization, and the resulting membranes were characterized using a variety of techniques to establish their performances, but also to gain insight into how the presence of each nanoparticle might be affecting the membrane active layer formation. A resulting CNC membrane (0.5 wt% loading) exhibited a 160% increase in water flux and an improvement in salt rejection to 98.98 ± 0.41 % compared to 97.53 ± 0.31 % for a plain polyamide control membrane. Likewise, a MOF nanorod membrane (0.01 wt% loading) with a high ratio of acid chain modification exhibited a 95% flux increase with maintained high salt rejection. For the CNCs, the flux increase is attributed to the formation of nanoscale voids along the length of each particle that form during the interfacial polymerization. These nanochannels introduce new rapid water transport pathways within the active layer of each membrane while maintaining ion rejection. The proposed mechanism for the MOF nanorods also introduces nanochannels into each membrane, but the presence of each nanorod's pore structure may offer another transport pathway for water molecules, one that varies with pore size. In combination, these results have allowed the study of molecular transport of water molecules and various ion species within the active layer of a thin film composite RO membrane. Understanding these phenomena will allow the development of smarter membrane materials to address present-day and future separations challenges.
Carbon nanotubes are also demonstrated as surface modifiers for forward osmosis (FO) membranes to address issues unique to the FO process, namely reverse solute flux (RSF). This method shows promise, as a coating density of 0.97 g/m2 reduced RSF for many draw solution species, including a 55% reduction for sodium chloride. / Doctor of Philosophy / Access to clean water is one of the world's foremost challenges that has been addressed on a large scale by membrane-based separation processes for the last six decades. Commercial membrane technology within one operation, reverse osmosis, has remained consistent since the late 1970s, however within the last two decades, access to nanotechnology has created a recent realm of study in which nanoparticles are incorporated into existing membrane designs. It is desired to use nanotechnology, or nanoparticles to improve membrane performance, i.e. create a membrane with better rejection of unwanted ions or contaminants or improve the amount of water that passes through the membrane. In the present work, two types of nanoparticles have been evaluated for their potential as TFN additives: cellulose nanocrystals (CNCs) and metal-organic framework (MOF) nanorods. Both CNCs and MOF nanorods were incorporated into membranes and the resulting membranes were characterized using a variety of techniques to establish how the nanoparticles affected performance. A resulting CNC membrane (0.5 wt% loading) exhibited a 160% increase in water flux (the amount of water passing through an area in a given amount of time) and an improvement in salt rejection. Likewise, a MOF nanorod membrane with a high ratio of acid chain modification exhibited a 95% flux increase with maintained high salt rejection. For both the CNCs and the MOFs, these performance changes are attributed to new pathways within each membrane for water flow that exist due to the presence of the nanoparticles in each system. In combination, these results have allowed the study of transport of water molecules and various ion species in each membrane. Understanding these results will allow the development of smarter membrane materials to address present-day and future separations challenges.
|
Page generated in 0.0583 seconds