Spelling suggestions: "subject:"metalens"" "subject:"heltalens""
1 |
Design and topological optimization of nanophotonic devicesLin, Ronghui 11 1900 (has links)
A central topic in the research of nanophotonics is the geometrical optimization of the nanostructures since the geometries are deeply related to the Mie resonances and the localized surface plasmon resonances in dielectric and metallic nanomaterials. When many nanostructures are assembled to form a metamaterial, the tuning of the geometrical parameters can bring even more profound effects, such as bound states in the continuum (BIC) with infinite quality factors (Q factors). Moreover, with the development of nanofabrication technologies, there is a trend of integrating nanostructures in the vertical direction, which provides more degrees of freedom for controlling the device performance and functionality. The main topic of this dissertation is to explore some of the abovementioned tuning possibilities to enhance the performance of nanophotonic devices. The dissertation contains two major parts:
In chapters 2 and 3, the vertical integration of metalenses is studied. We discover a phenomenon similar to the Moiré effect in the bilayer Pancharatnam-Berry phase metalenses and reveal the role of geometrical imperfections on the focusing performance of reflective metalenses. Novel multifocal and reflective metalenses, with smaller
footprints and enhanced performance compared to their bulky conventional counterparts, are designed based on the theoretical findings. The study of geometrical imperfections also provides guidelines for analyzing and compensating the fabrication errors, which is vital for large scale production and commercialization of metalenses.
In chapters 4 and 5, we use machine learning to harness the full tuning power of the complicated geometries, which is challenging with conventional design methods. Plasmonic metasurfaces with on-demand optical responses are designed by manipulating the coupling of multiple nanodisks using neural networks. An accuracy of ± 8 nm is achieved, which is higher than previous reports and close to the fabrication limits of nanofabrication technologies. We also demonstrate, for the first time, the control of multiple BIC states using freeform geometries with predefined symmetry. It is a new method to exploit the untapped potential of freeform photonics structures.
The discoveries we have made in both dielectric and plasmonic nanophotonic devices could benefit applications such as imaging, sensing, and light-emitting devices.
|
2 |
A Maskless Lithography System Based On Digital Micromirror Device (DMD) And Metalens ArrayLuo, Shiqi 10 August 2022 (has links)
No description available.
|
3 |
Broadband Reflective Metalens in Visible Band Based on Bragg Reflector Multilayers for VECSEL ApplicationsAlnakhli, Zahrah J. 08 1900 (has links)
In conventional optics, curved lenses focus light rays to a focal point after light passes through them. These lenses have been designed to shape the wavefront of the incident beam as it emerges from the curved surface of the lens. Conventional lenses suffer from many limitations, such as limited optical quality for imaging and integration difficulties with other optical components due to their large size, huge thickness, as well as being difficult to manufacture. Using subwavelength structure, it is possible to fabricate flat, thin lenses (metalenses) with new optical properties not found in nature, in which many fundamental properties of light (like polarization, focal point, and phase) can be controlled with high accuracy. This results in high resolution and high quality of optical imaging.
This thesis demonstrates a new design of reflective metalens, in which the metalens structure is integrated with another optical component: Distributed Bragg Reflector (DBR). The metalens planer is a two-dimensional ultrathin planer arranged as an array with subwavelength separation distance. In recent works, a metalens was integrated with (metal/dielectric)-mirrors to form reflective metalenses. Simulation results show that, high-focusing efficiency is obtained for the lens (> 60%) with the ability to
reflect96% of total incident optical power. In comparison, the new metalens-DBR design - processes maintain the same high-focusing efficiency, but with a reflectance of 99.99%, which makes it promising for optoelectronic integration and perfectly suitable for integration with Vertical Cavity Surface Emitting Lasers (VCSEL) technology. This study of the optical properties: focal length; optical aberration; insensitivity to light polarization; and focusing efficiency of demonstrated metalens was done mainly by Finite Difference Time Domaine (FDTD) by using Lumerical FDTD solution.
|
4 |
Gradient-Index Metamaterial Infrared Detector for Enhanced Photo-Response and Image QualityAdams, Kelsa Derek 05 1900 (has links)
An enhanced thermal imaging concept made possible through the development of a gradient-indexed metamaterial infrared detector that offers broadband transmission and reflection in THz waves. This thesis proposes a proof of feasibility for a metamaterial infrared detector containing an anti-reflective coating with various geometrically varying periodic metasurfaces, a gradient-indexed dielectric multilayer for near-perfect longpass filtering, and a gradient index of refraction (GRIN) metalens for enhanced focal plane thermal imaging. 2D Rigorous Coupled-Wave Analysis (RCWA) is used for understanding the photonic gratings performance based on material selection and varying geometric structure. Finite Difference Time Domain (FDTD) is used to characterize performance for a diffractive metalens by optimizing the radius and arrangement of cylindrical nanorods to create a desired phase profile that can achieve a desired focal distance for projections on a detector for near- to far-infrared thermal imaging. Through combining a micromachined anti-reflective coating, a near-perfect longpass filter, and metamaterial GRIN metalens, infrared/THz focal plane thermal imaging can obtain faster photo-response and image quality at targeted wavelengths, which allows for scientific advancements in electro-optical devices for the Department of Defense, aerospace, and biochemical detection applications.
|
5 |
Designing Optical Metastructures for IR Sensing, Discernment and Signature ReductionJames Lawrence Stewart (10701084) 27 April 2021 (has links)
<div>Increasing flexibility of light manipulation is vital for various domains including both biomedical and military applications, where a lack of photon control could become critical. The efforts conducted and projected within this proposal are focused on three major areas: semi-continuous planar thin film photomodification for infrared (IR) filtering, nanosphere core-shell structures for obscurance, and all-dielectric sub-wavelength focal lenses for advanced IR sensing.Through a collaborative effort with the Army Research Office, we advanced the tunability of planar plasmonic filters with cutoff wavelengths in the 10–16μm range with photomodification using a 10.6μm CO2laser. Surface-enhanced molecular absorption in concert with three-dimensional (3D) Au nano-structures with inherent broad absorption in the IR band was a novel approach utilized to create such planar filters.Expanding on these, efforts and the results of the 2-dimensional (2D) semicontinuous Au plasmonic planar filtering, we further advanced our research with 3D Au nano-coreshell structures to enable levitated long-wavelength pass filter obscurants. We exploited the radiative effects of Au nano-structures that mimic conventional apertures or antennas, though these structures are on the nanometer scale and demonstrated the filtering characteristics through flow cell.In parallel with our plasmonic filtering we designed, manufactured and tested low loss dielectric microlenses for IR radiation based on a dielectric metasurface layer by patterning a SI substrate and etching to sub-micron depths. For a proof-of-concept lens demonstration,we chose a fine patterned array of nano-pillars with variable diameters.Merging our plasmonic filtering and dielectric microlens efforts, we created a holographic lenslet by designing and simulating a low loss focusing metasurface lens with engineered nano-scaled features to converge off-axis IR radiation. An array of nano-pillars with varied diameter and fixed height and periodicity was chosen for ease of fabrication with single layer etching</div>
|
Page generated in 0.0497 seconds