• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 19
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 44
  • 40
  • 35
  • 28
  • 27
  • 27
  • 26
  • 20
  • 20
  • 19
  • 18
  • 18
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Amorphous multi-component metals as electrode materials /

Cowell, E. William. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 103-106). Also available on the World Wide Web.
52

Deformation behaviour of a Zr-Cu-based bulk metallic glass

Nekouie, Vahid January 2017 (has links)
While inelastic mechanical behaviour of crystalline materials is well-understood in terms of lattice defects, bulk metallic glasses (BMGs) pose significant challenges in this respect due to their disordered structure. They can be produced by rapid cooling from the liquid state (among other technique) and, thus can be frozen as vitreous solids. Due to the absence of a long-range order in atomic structure and a lack of defects such as dislocations, BMGs generally show unique mechanical properties such as high strength and elastic limit, as well as good fracture toughness and corrosion resistance. Typically, inorganic glasses are brittle at room temperature, showing a smooth fracture surface as a results of mode-I brittle fracture. At small scale, it was well documented that inelastic deformation of bulk metallic glasses is localised in thin shear bands. So, in order to understand deformation mechanisms of BMGs comprehensively, it is necessary to investigate formation of shear bands and related deformation process. In this thesis, a history of development of BMGs is presented, followed by a review of fundamental mechanisms of their deformation.
53

Quantum corrections to the conductivity in simple metallic glasses

Richter, Reinhart January 1988 (has links)
No description available.
54

Crystallization characteristics of Ni-Ti metallic glasses

Braña, Paula. January 1987 (has links)
No description available.
55

Thermopower and resistivity of binary metallic glasses

Baibich, Mario Norberto January 1982 (has links)
No description available.
56

Welding and weld repair of nanostructured and amorphous materials

Cadney, Sean. January 2007 (has links)
No description available.
57

Experimental and Computational Investigations of Strain Localization in Metallic Glasses

Bharathula, Ashwini 29 October 2010 (has links)
No description available.
58

Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Ayyagari, Venkata Aditya 12 1900 (has links)
Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass subjected to high strain processing was studied. High strain processing caused shear band formation and an increase in the free volume. Potentiodynamic polarization and EIS showed a strong correlation between the enthalpy of structural relaxation and corrosion rate and polarization resistance. Pitting was observed to preferentially occur on shear bands in the processed samples, while it was stochastic in unprocessed glass. The corrosion analysis of Co-Fe glasses showed an increase in corrosion current density when Fe content was increased from 0 to 7 at%. The corrosion resistance improved when Fe content was further increased to 15 at%. Similar trend was seen in EIS studies. The improved corrosion resistance at 15 at% Fe can be attributed to the large supercooled region that facilitates the formation of completely amorphous alloy, in contrast to lower Fe containing alloys, where short range ordering may deteriorate the corrosion resistance. Porous metallic glass structure was developed by electrochemical dealloying via cyclic voltammetry. Mechanical properties and changes in electrical conductivity were measured as a function of depth from surface by nano-indentation and nano electrical contact resistance technique. The nanoporous layer was found have hardness of 0.41 GPa and elastic modulus of nearly 22 GPa. The resistivity of the nanoporous layer continuously decreased when moving towards the substrate as the indentation depth increased which is attributed to the gradient in pore size.
59

Soft Ferromagnetic Bulk Metallic Glasses with Enhanced Mechanical Properties

Ramasamy, Parthiban 09 January 2018 (has links) (PDF)
Fe-based bulk metallic glasses (BMGs) have gained considerable interest due to their excellent soft magnetic properties with high saturation magnetization, high electrical resistivity, very good corrosion resistance, low materials cost, extremely high mechanical strength and hardness. In spite of having excellent strength, Fe-based BMGs are not used as structural materials in service, so far. The major obstacle is their inherent brittleness under mechanical loading, once a crack is developed the material fails catastrophically. Owing to the ever growing industrial demand for the materials with outstanding properties, aside from exploring new alloy compositions, it is pertinent to understand why or why-not the existing system work and how to improve their properties. Recent reports suggested that the plastic deformability can be enhanced by introducing different microstructural heterogeneities such as free volume enhanced regions, separated phases, nano-crystals, atomic clusters caused by for instance additions of small amount of soft elements. Understanding the effect of addition of soft elements to Fe-based BMGs on thermal stability, structural evolution, magnetic and mechanical properties are the main point which this work addresses. In this work, a study on two different soft ferromagnetic Fe-based glass forming alloys are presented, both of them known to have very high mechanical strength and excellent soft magnetic properties but so far have not been used in any industrial applications. The important issue is with the brittle behavior of this BMGs, particularly under mechanical loading. In each glass forming alloys, the aim was to find out the optimum quantity of the soft elements (Cu and Ga), which can be added to improve their room temperature plastic deformability without affecting the glass forming ability (GFA) and soft magnetic properties. The first glass forming alloy that is studied is Fe36Co36B19.2Si4.8Nb4. This glass forming alloy is highly sensitive to the impurities, only pure elements were used to form this alloy. The addition of only 0.5 at.% Cu completely changes the thermal stability and structural evolution but it also improves the mechanical properties. In case of Ga addition up to 1.5 at.% the crystallization behavior remains unaltered and the thermal stability improves marginally. The addition of Ga improves the plastic deformability of the glass by forming soft zones, whose melting point is much lower compared to rest of the alloy. These soft zones are responsible for the plastic deformation of this glass. Thus addition of Ga is very beneficial in improving the mechanical properties of this Fe-based BMG. In the second part, Fe74Mo4P10C7.5B2.5Si2 glass forming alloy is studied. Unlike the aforementioned alloy, this glass forming alloy is not very sensitive to the impurities, industrial grade alloy elements can also be used to form this alloy. In this alloy addition of Cu is beneficial only up to 0.5 at.%, beyond that Cu addition deteriorates GFA and magnetic properties. In case of Ga addition up to 2 at.% the crystallization behavior remains unaltered and the thermal stability improves marginally. Similar to the FeCoBSiNb glass, the addition of Ga in FeMoPCBSi glass also improves the plastic deformability of the glass by formation of soft zones. Addition of small at.% Ga proved be an viable solution to improve the plastic deformability in the ferromagnetic Fe-based metallic glasses without compromising on thermal and magnetic properties of the glass. In the final part we tried to cast the Fe74Mo4P10C7.5B2.5Si2 glass in a complex shape using an industrial high pressure die casting (HPDC) set up. The important issues were with the casting alloy temperature, casting speed and die material. The aim of our work was to optimize the die material suitable for casting the BMGs and then address the issues with casting temperature and casting speed. We have thus attempted to gain a basic knowledge in casting the Fe-based BMG in industrial scale. Our effort was tremendously successful, we were able to produce fully amorphous complex shaped samples with excellent surface finish. We have thus made a considerable advancement towards understanding the basics behind improving the room temperature plastic deformability in Fe36Co36B19.2Si4.8Nb4 and Fe74Mo4P10C7.5B2.5Si2 ferromagnetic BMGs. We have also made a considerable progress in industrialization of bulk ferromagnetic BMGs.
60

Glass Forming Ability, Magnetic Properties, and Mechanical Behavior of Iron-Based and Cobalt-Based Metallic Glasses

Veligatla, Medha 12 1900 (has links)
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. In particular, low coercivity and high permeability of iron and cobalt based metallic glass compositions could potentially lead to extensive commercial use as magnetic heads, transformer cores, circuits and magnetic shields. In the current study, few metallic glass compositions were synthesized by systematically varying the iron and cobalt content. Thermal analysis was done and included the measurement of glass transition temperature, crystallization temperature, and the enthalpies of relaxation and crystallization. Magnetic properties of the alloys were determined including saturation magnetization, coercivity, and Curie temperature. The coercivity was found to decrease and the saturation magnetization was found to increase with the increase in iron content. The trend in thermal stability, thermodynamic properties, and magnetic properties was explained by atomic interactions between the ferromagnetic metals and the metalloids atoms in the amorphous alloys. Mechanical behavior of iron based metallic glasses was evaluated in bulk form as well as in the form of coatings. Iron based amorphous powder was subjected to high power mechanical milling and the structural changes were evaluated as a function of time. Using iron-based amorphous powder precursor, a uniform composite coating was achieved through microwave processing. The hardness, modulus, and wear behavior of the alloys were evaluated using nano-indentation.

Page generated in 0.0421 seconds