• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 19
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 44
  • 40
  • 35
  • 28
  • 27
  • 27
  • 26
  • 20
  • 20
  • 19
  • 18
  • 18
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermal Stability of Amorphous MoSiZr Thin Films

Kaplan, Maciej January 2016 (has links)
Metallic glass is a class of materials which have a disordered structure of atoms, due to this, glasses lack grains and grain boundaries, which are present in their crystalline counterparts. Metallic glasses have many interesting properties worth investigating, such as high corrosion resistance or high mechanical strength. However, metallic glasses are metastable and will therefore crystallise if heated above the crystallisation temperature. MoSiZr alloys have been studied and to gain knowledge of how the composition affects the crystallisation temperature, which enables further improvement of thermal stability. Crystallisation temperatures of the MoSiZr alloys were investigated by heat treatments in vacuum and ex-situ X-ray diffraction and X-ray reflectivity analysis. The highest thermal stability of the alloys was exhibited by M48Si48Zr4, Mo43Si50Zr7, Mo50Si40Zr10 and Mo45Si43Zr12, they remained amorphous after heat treatment at 1073 K. The resulting crystalline phases are Mo3Si, Mo5Si3 and ZrO2. Oxidation of Zr in the alloys is present only when the Zr content is at least 10 at%, crystallisation is otherwise mainly driven by formation of Mo3Si. Further improvement of the thermal stability is possible by introducing new alloying elements at the cost of those that promote crystallisation. Keeping the content of Zr below 10 at% is of great importance to prevent oxidation.
62

Desenvolvimento de um processo para a produção de peças metálicas vítreas / Production Process of Bulk Metallic Glasses

Pereira, Flavio Soares 08 May 2009 (has links)
Vidros metálicos maciços fazem parte de um novo grupo de materiais de características distintas das ligas metálicas convencionais. O processamento dessas ligas ainda não foi bem consolidado nos centros de pesquisa brasileiros devido à dificuldade de processamento. Este trabalho descreve o desenvolvimento de um sistema de síntese e coquilhamento para a obtenção de vidros metálicos maciços. O sistema foi avaliado quanto ao desempenho e repetibilidade das amostras. A liga Cu46Zr42Al7Y5, formadora de vidro, foi processada e analisada através da caracterização por difração de raios-X (DRX), calorimetria exploratória diferencial (DSC) e microscopia eletrônica de varredura (MEV). Foram obtidas duas amostras com estrutura totalmente amorfa em espessuras médias de até 1,5 mm e uma amostra com aproximadamente 5,5 mm de espessura amorfa. A temperatura de transição vítrea observada foi igual às relatadas na literatura científica. Assim, o sistema desenvolvido mostrou-se eficiente para o controle da atmosfera, resfriamento rápido das amostras e outras variáveis que são obrigatórias para o sucesso na formação de estruturas amorfas em ligas por fundição. / Bulk metallic glasses are new materials with different features in comparison with conventional metallic alloys. The processing techniques of such alloys are still not consolidated in Brazilian research centers because of inherent processing difficulties. This work describes the development of a system for the synthesis and casting of bulk metallic glassy samples. The system was evaluated by its performance and alloys repeatability. The Cu46Zr42Al7Y5 alloy was processed and analyzed for the formation of amorphous structure through X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). It was produced two samples with fully amorphous structure at average thickness of 1.5 mm and one sample reaching around 5.5 mm of fully glassy structure. The same glass transition temperature reported on scientific literature was found in the alloys processed in the present work. Thus, the system has shown efficiency on atmosphere control, sample quenching and others important variables that are, by default, necessary to succeed in amorphous structure formation.
63

Evidence of amorphous/liquid phase separation in Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ alloy. / 非晶液態鈀-鎳-磷合金相位分離的證據 / Evidence of amorphous/liquid phase separation in Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ alloy. / Fei jing ye tai ba-nie-lin he jin xiang wei fen li de zheng ju

January 2011 (has links)
Yin, Weixin = 非晶液態鈀-鎳-磷合金相位分離的證據 / 殷瑋欣. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references. / Abstracts in English and Chinese. / Yin, Weixin = Fei jing ye tai ba-nie-lin he jin xiang wei fen li de zheng ju / Yin Weixin. / Acknowledgement --- p.i / Abstract --- p.ii / Contents --- p.iv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- A Brief Introduction to Metallic Glass --- p.1 / Chapter 1.2 --- Homogeneous Nucleation Frequency --- p.3 / Chapter 1.3 --- Heterogeneous Nucleation Frequency --- p.4 / Chapter 1.4 --- Spinodal Decomposition --- p.5 / Chapter 1.5 --- Conditions for Metallic Glasses Formation --- p.8 / Chapter 1.6 --- How to Get Large Undercooling --- p.9 / Chapter 1.7 --- Liquid Phase Separation --- p.10 / References --- p.12 / Figures --- p.13 / Chapter Chapter 2 --- Experimental Procedures and Techniques of Transmission Electron Microscopy --- p.18 / Chapter 2.1 --- Sample preparation --- p.18 / Chapter 2.1.1 --- Ni2P Preparation --- p.18 / Chapter 2.1.2 --- Alloying --- p.18 / Chapter 2.1.3 --- Fluxing --- p.18 / Chapter 2.2 --- Introduction to TEM Specimen Preparation --- p.19 / Chapter 2.2.1 --- "Grinding, Polishing and Punching" --- p.19 / Chapter 2.2.2 --- Final Thinning by Ion Miller --- p.20 / Chapter 2.2.3 --- Final Thinning by Twin Jet --- p.20 / Chapter 2.3 --- Introduction to Transmission Electron Microscopy Techniques --- p.21 / Chapter 2.3.1 --- Basic Instrumentations of TEM --- p.21 / Chapter 2.3.2 --- Elastic Scattering and Inelastic Scattering --- p.21 / Chapter 2.3.3 --- Image Contrast --- p.22 / Chapter 2.3.4 --- Dark Field Image and Bright Field Image --- p.24 / Chapter 2.3.5 --- EDX Mapping --- p.24 / Chapter 2.3.6 --- High Resolution Images --- p.25 / References --- p.26 / Figures --- p.27 / Chapter Chapter 3 --- Evidence of amorphous/liquid phase separation in Pd41.25Ni41.25P17.5 alloy --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.2 --- Experimental --- p.34 / Chapter 3.3 --- Discussions --- p.42 / References --- p.44 / Figures --- p.45 / Chapter Chapter 4 --- Conclusions --- p.68
64

Amorphous phase separation in a bulk metallic glass of negative heat of mixing. / 對於具有負混合熱的塊狀金屬玻璃非晶相分離的研究 / Amorphous phase separation in a bulk metallic glass of negative heat of mixing. / Dui yu ju you fu hun he re de kuai zhuang jin shu bo li fei jing xiang fen li de yan jiu

January 2012 (has links)
過去幾十年當中,金屬玻璃(包括塊狀金屬玻璃)中非晶相分離的發生已經成為了一個具有爭議性的課題。一些報告報導在具有負混合熱的Pd-Ni-P合金體系中發生了非晶相分離。然而,有一些報告聲稱相分離不能在Pd-Ni-P非晶合金中被觀察到。文獻分析表明,困難在於缺乏直接的實驗證據。 / 為了解決這個難題,示差掃描量熱儀、高分辨電子顯微鏡、掃描透射模式下的高角環射暗場相、以及能量色散X射線光譜儀等檢測儀器在我們實驗當中被使用。同時為了清楚展示非晶相分離反應,在過冷Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅熔體被冷卻為固態非晶樣品之前引入了中間熱退火處理。 / 實驗研究了三種經由不同路徑製備的A、B、C型號樣品。結果表明在非晶/液態Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅合金中可能存在獨特的短程有序結構,它會導致相分離的發生。同时研究發現,在大約625 K,調幅分解的持續時間的下限大概是200 s。調幅分解的時間常數R在大約625 K 下為0.002 s⁻¹。三种类型样品在不同的溫度下被退火從而獲得部分的結晶。A型號和B型號具有相似的行為。在低溫下,圓形的核心首先形成,接著發生共晶反應。在高溫下,出現了一種形狀為立方體的析出相。在C型號的樣品當中,核心和立方的析出物同時被發現。但是核心的成分分佈與A和B型號中出現的不同。同時,隨著退火時間的加長形核的數量也具有獨特的行為表現。作為對比,Pd₄₀Ni₄₀P₂₀塊狀金屬玻璃的結晶行為也被展開了研究。同樣的,以形成核心開始,但是它的成分分佈異於A和B型號的樣品。 / Amorphous phase separation in metallic glass (including bulk metallic glass) has been a controversial issue in the past several decades. There are reports saying that amorphous phase separation occurs in Pd-Ni-P, which has a negative heat of mixing among its constituent elements. However, there are also as many reports claiming that phase separation is absent in amorphous Pd-Ni-P alloys. The lack of direct experimental evidence makes the issue to be difficult to be resolved. / To solve this problem, differential scanning calorimetry (DSC), high resolution transmission electron microscopy (HRTEM), high angle annular dark field (HAADF) in scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDX) have been employed. Intermediate thermal annealing is introduced before an undercooled Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ melt is cooled down to become a solid amorphous specimen. / A-type, B-type, and C-type specimens of composition, Pd₄₁.₂₅Ni₄₁.₂₅ P₁₇.₅, have been prepared via three different cooling paths. It was found that amorphous phase separation indeed occurs in C-type specimens. Results suggest that there may be unique short range orders in amorphous/liquid Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅, which are responsible for the phase separation. Experimental arrangements were made to study the occurrence of spinodal reaction in undercooled molten Pd₄₁.₇₅Ni₄₁.₇₅P₁₇.₅ alloys as a function of time. The lower bound of the duration of the spinodal decomposition at a temperature of {U+2248}625 K is about 200 s and the time constant R of the spinodal decomposition at a temperature of {U+2248}625 K is 0.002 s⁻¹. / A-type and B-type specimens have similar crystallization behavior. At low temperature, it starts with the formation of a spherical core and then eutectic crystallization takes over. At higher temperatures, an additional phase in the shape of a cube appears. In annealed C-type specimens, cores and cubic precipitates are also found. However, the composition profile of the cores is different and the number of nucleation events versus time has peculiar characteristics. The crystallization behavior of Pd₄₀Ni₄₀P₂₀ BMG was studied for comparison. It again starts out with the formation of a core, but with a composition profile different from those of A-type and B-type specimens. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Lan, Si = 對於具有負混合熱的塊狀金屬玻璃非晶相分離的研究 / 蘭司. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references. / Abstract also in Chinese. / Lan, Si = Dui yu ju you fu hun he re de kuai zhuang jin shu bo li fei jing xiang fen li de yan jiu / Lan Si. / Abstract of thesis --- p.i / Acknowledgements --- p.v / List of Tables --- p.x / List of Figures --- p.xi / Chapter Chapter 1 --- Introduction and literature review --- p.1 / Chapter 1.1 --- Introduction to metallic glasses --- p.1 / Chapter 1.1.1 --- Background of metallic glasses --- p.1 / Chapter 1.1.2 --- Glass transition --- p.2 / Chapter 1.1.3 --- The undercooling of liquids --- p.3 / Chapter 1.1.4 --- Crystal nucleation and growth in liquids --- p.3 / Chapter 1.1.4.1 --- Crystal Nucleation in liquids --- p.3 / Chapter 1.1.4.2 --- Crystal growth in liquids --- p.5 / Chapter 1.1.4.3 --- TTT diagram --- p.6 / Chapter 1.1.4.4 --- Crystallization in metallic glasses --- p.6 / Chapter 1.1.5 --- Glass formation methods and systems --- p.6 / Chapter 1.1.6 --- Glass forming ability and criteria --- p.8 / Chapter 1.1.7 --- Properties and applications --- p.9 / Chapter 1.2 --- The basic theory of phase separation in a binary system --- p.10 / Chapter 1.2.1 --- Thermodynamic background --- p.10 / Chapter 1.2.2 --- Solid state phase separation --- p.11 / Chapter 1.2.2.1 --- A miscibility gap of binary mixture --- p.11 / Chapter 1.2.2.2 --- Nucleation and growth mechanism --- p.12 / Chapter 1.2.2.3 --- Spinodal decomposition mechanism --- p.13 / Chapter 1.2.3 --- Liquid state miscibility gap in a binary system --- p.21 / Chapter 1.3 --- Literature review for phase separation in metallic glasses --- p.23 / Chapter 1.4 --- The aim of this thesis --- p.28 / Figures --- p.30 / References --- p.39 / Chapter Chapter 2 --- Experiments and characterization --- p.44 / Chapter 2.1 --- Introduction and the outline of the experiments --- p.44 / Chapter 2.2 --- Sample preparation --- p.45 / Chapter 2.2.1 --- Bulk metallic glasses preparation --- p.45 / Chapter 2.2.1.1 --- Preparation of clean fused silica tubes --- p.45 / Chapter 2.2.1.2 --- Weighing --- p.46 / Chapter 2.2.1.3 --- Alloying --- p.46 / Chapter 2.2.1.4 --- Fluxing --- p.47 / Chapter 2.2.2 --- Thermal annealing --- p.49 / Chapter 2.2.3 --- Specimens preparation for characterization --- p.50 / Chapter 2.2.3.1 --- Cutting, molding, grinding and polishing --- p.50 / Chapter 2.2.3.2 --- Etching --- p.51 / Chapter 2.2.3.3 --- Thinning for TEM foils --- p.51 / Chapter 2.3 --- Characterization --- p.55 / Chapter 2.3.1 --- Differential scanning calorimetry (DSC) --- p.55 / Chapter 2.3.2 --- Scanning electron microscopy (SEM) --- p.55 / Chapter 2.3.3 --- Transmission electron microscopy (CTEM and HRTEM) --- p.57 / Chapter 2.3.4 --- High angle annular dark field (HAADF) in Scanning transmission electron microscopy (STEM) --- p.58 / Chapter 2.3.5 --- Energy dispersive X-ray spectroscopy (EDX) --- p.59 / Figures --- p.62 / References --- p.69 / Chapter 3 --- p.70 / Chapter 3.1 --- Introduction --- p.70 / Chapter 3.2 --- Materials and Experimental --- p.73 / Chapter 3.3 --- Results --- p.75 / Chapter 3.3.1 --- Thermal behaviors of three types of specimens --- p.75 / Chapter 3.3.2 --- Microstructures of three types of specimens --- p.75 / Chapter 3.3.2.1 --- A-type specimens --- p.75 / Chapter 3.3.2.2 --- B-type specimens --- p.76 / Chapter 3.3.2.3 --- C-type specimens --- p.76 / Chapter 3.4 --- Discussion --- p.78 / Chapter 3.5 --- Conclusions --- p.79 / Chapter 3.6 --- Afterward --- p.79 / Figures --- p.80 / References --- p.89 / Chapter Chapter 4 --- The time constant of the spinodal decomposition in Pd₄₁.₇₅Ni₄₁.₇₅P₁₇.₅ bulk metallic glasses --- p.92 / Chapter 4.1 --- Introduction --- p.92 / Chapter 4.2 --- Materials and experimental --- p.92 / Chapter 4.3 --- Results --- p.94 / Chapter 4.3.1 --- Thermal behaviors --- p.94 / Chapter 4.3.2 --- Microstructures --- p.94 / Chapter 4.4 --- Discussion --- p.96 / Chapter 4.5 --- Conclusions --- p.98 / Figures --- p.100 / References --- p.123 / Chapter Chapter 5 --- Crystallization in homogeneous and phase-separated Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ bulk metallic glasses --- p.125 / Chapter 5.1 --- Introduction --- p.125 / Chapter 5.2 --- Experiments --- p.126 / Chapter 5.3 --- Results --- p.128 / Chapter 5.3.1 --- Low temperature thermal annealing at 613 K with 0≤t{U+2090} ≤ 8 h --- p.128 / Chapter 5.3.1.1 --- A-type and B-type specimens --- p.128 / Chapter 5.3.1.2 --- C-type specimens --- p.130 / Chapter 5.3.1.3 --- Pd₄₀Ni₄₀P₂₀ BMG --- p.132 / Chapter 5.3.2 --- High temperature thermal annealing --- p.133 / Chapter 5.3.2.1 --- A-type and B-type specimens --- p.133 / Chapter 5.3.2.2 --- C-type specimens --- p.135 / Chapter 5.3.2.3 --- Pd₄₀Ni₄₀P₂₀ BMG --- p.137 / Chapter 5.4 --- Discussion --- p.137 / Chapter 5.4.1 --- Formation of spherical cores --- p.138 / Chapter 5.4.1.1 --- A-type and B-type Pd₄₁.₇₅Ni₄₁.₇₅P₁₇.₅ specimens --- p.138 / Chapter 5.4.1.2 --- C-type Pd₄₁.₇₅Ni₄₁.₇₅P₁₇.₅ specimens --- p.139 / Chapter 5.4.1.3 --- Pd₄₀Ni₄₀P₂₀ BMG --- p.140 / Chapter 5.4.2 --- Formation of cubic precipitates --- p.141 / Tables --- p.142 / Figures --- p.144 / References --- p.188 / Chapter Chapter 6 --- Conclusions --- p.190 / Bibliography --- p.192
65

Liquid phase separation in molten Pd-Ni-P alloy =: 熔融鈀-鎳-磷合金的液態相分離. / 熔融鈀-鎳-磷合金的液態相分離 / Liquid phase separation in molten Pd-Ni-P alloy =: Rong rong ba, nie, lin he jin de ye tai xiang fen li. / Rong rong ba, nie, lin he jin de ye tai xiang fen li

January 1996 (has links)
by Yuen Cheong Wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves [138]-[142]). / by Yuen Cheong Wing. / Acknowledgments --- p.ii / Abstract --- p.iii / Table of Contents --- p.v / Chapter Chapter 1: --- Introduction --- p.1-1 / Chapter 1.1 --- What is Metallic Glass? --- p.1-1 / Chapter 1.2 --- Use of Metallic Glass --- p.1-3 / Chapter 1.3 --- A Dilemma --- p.1-4 / Chapter 1.4 --- Glass Forming Ability --- p.1-5 / Chapter 1.5 --- Role of Liquid State Phase Separation in GFA --- p.1-6 / References --- p.1-9 / Figure --- p.1-10 / Chapter Chapter 2: --- Phase Separation Theory --- p.2-1 / Chapter 2.1 --- Free Energy Curve --- p.2-1 / Chapter 2.2 --- Nucleation and Growth --- p.2-2 / Chapter 2.2.1 --- Liquid state nucleation and growth --- p.2-2 / Chapter 2.2.2 --- Nucleation and growth during solidification --- p.2-4 / Chapter 2.3 --- Spinodal Decomposition --- p.2-5 / Chapter 2.3.1 --- Cahn-Hilliard linearized equation --- p.2-6 / Chapter 2.3.2 --- Temporal evolution --- p.2-9 / References --- p.2-12 / Figures --- p.2-15 / Chapter Chapter 3 : --- Experimental Setup and Techniques --- p.3-1 / Chapter 3.1 --- Technique in Achieving High Undercooling --- p.3 -1 / Chapter 3.1.1 --- Effects and limitation of B203 --- p.3-1 / Chapter 3.1.2 --- Preparation of B203 --- p.3-3 / Chapter 3.1.3 --- Cleansing of apparatus --- p.3-4 / Chapter 3.2 --- Experimental --- p.3-5 / Chapter 3.2.1 --- Sample preparation --- p.3-6 / Chapter 3.2.2 --- Experimental setup --- p.3-7 / Chapter 3.2.3 --- Procedures --- p.3-8 / Chapter 3.3 --- Observing the Microstructure --- p.3-9 / Chapter 3.3.1 --- Cutting --- p.3-10 / Chapter 3.3.2 --- Molding --- p.3-10 / Chapter 3.3.3 --- Polishing --- p.3-11 / Chapter 3.3.4 --- Etching --- p.3-12 / Chapter 3.3.5 --- Observation --- p.3-12 / References --- p.3-14 / Table --- p.3-15 / Figures --- p.3-16 / Chapter Chapter 4: --- Metastable liquid phase separationin undercooled molten PD40. 5]\l40.5P19 --- p.4-1 / Abstract --- p.4-1 / References --- p.4-9 / Figures --- p.4-10 / Chapter Chapter 5 : --- Transformation in undercooled molten PD40.5NI40.5P19 --- p.5-1 / Chapter 5.1 --- Abstract --- p.5-1 / Chapter 5.1 --- Introduction --- p.5-2 / Chapter 5.3 --- Experimental --- p.5-4 / Chapter 5.4 --- Results --- p.5-6 / Chapter 5.5 --- Discussions --- p.5-13 / References --- p.5-20 / Figures --- p.5-22 / Chapter Chapter 6 : --- Solidification of liquid spinodal in undercooled PD40.5NI40.5P19 --- p.6-1 / Chapter 6.1 --- Abstract --- p.6-1 / Chapter 6.2 --- Introduction --- p.6-2 / Chapter 6.3 --- Experimental --- p.6-3 / Chapter 6.4 --- Results --- p.6-5 / Chapter 6.5 --- Discussions --- p.6-10 / References --- p.6-17 / Figures --- p.6-18 / Chapter Chapter 7: --- Conclusion --- p.7-1 / References --- p.7-4 / Bibliography --- p.B-1
66

Rheological measurements of bulk metallic glass forming alloys above the liquidus temperature

Shaw, Tyler A. 05 November 2004 (has links)
A high temperature high vacuum rheometer has been designed, fabricated, and tested for the study of the steady shear viscosity for multicomponent bulk metallic glass forming alloys. This rheometer has an operating range up to 1525 K, rotational frequencies of 9.4*10⁻³-3.7*10¹ radians/s, and a calibrated viscosity range of 9.6*10⁻³ and 1.2*10² Pa*s while maintaining absolute pressures pressure < 1*10⁻⁶ mbar. Zr[subscript 41.2]Ti[subscript 13.8]Cu[subscript 10.0]Ni[subscript 12.5]Be[subscript 22.5] (Vitreloy 1) is reported. The unexpected findings of non-Newtonian behavior above the liquidus temperature were observed. Observations of shear thinning, thixotropic, and viscoelastic behaviors have been made. Our results show that Vitreloy 1 can be modeled as a power law fluid, with a power law exponent of approximately -0.5 for high shear rates. We attribute the non-Newtonian behavior to structural ordering within the melt. The technological and scientific implications for non-Newtonian behavior are discussed. / Graduation date: 2005
67

Analysis of Plasticity and Shear Band Deformation Mechanism in Bulk Metallic Glasses and Composites

Chen, Hai-min 16 November 2009 (has links)
On the toughening of bulk metallic glasses (BMGs), successful results in the phase-separated Zr63.8Ni16.2Cu15Al5 BMG have achieved compressive ductility over 15% through the computational-thermodynamic approach. In this study, the phase-separated Zr63.8Ni16.2Cu15Al5 BMG was compressed to nominal strains of 3%, 7%, and 10% at low strain rates (~10-4 s-1) and the results demonstrated that the BMG exhibited apparent uniform deformation initially, followed by visible local shear bands development. Afterwards, a single shear along the principal shear plane was soon developed and mainly dominated the whole deformation process. The principal shear contributed more than 2/3 of the overall plastic strain until failure. It was also found that the local shear strain varied along the principal shear plane and decreased monotonically from the shear band initiation site. Subsequently, in-situ compression experiments were conducted to monitor the change of sample shape during deformation in order to properly correlate with the stress-strain curve. The observed images showed that there was a one-to-one correspondence between the intermittent sample sliding and flow serration in the plastic region of stress-strain curve. Further investigations on flow serration were conducted on the Pd40Ni40P20 BMG through the compression experiments equipped with high-sensitivity strain gauges directly attached to two opposite sides of the test sample. There was an accompanied displacement burst when a shear band starts to propagate during deformation and this displacement burst would be accurately captured by the high-sensitivity strain gauges. Based on the displacement-time profile for one serration, shear-band propagating speed can be estimated and found to be insensitive to the applied strain rates (or the applied crosshead speeds). The disappearance of flow serration at high strain rates should be a result that the signal of displacement burst was overwhelmed by the applied strain rate. Using the shear strain rate data, the measured viscosity within a propagating shear band was found to be relatively low, which is in similar to the viscosity values reported in the supercooled liquid region during homogeneous deformation. In comparison with shear band propagation in the brittle Mg58Cu31Y6Nd5 and Au49Ag5.5Pd2.3Cu26.9Si16.3, moderately ductile Cu50Zr43Al7 and Pd40Ni40P20, and highly ductile phased-separated Zr63.8Ni16.2Cu15Al5 systems, the ductility of BMGs appears to be closely related to the dynamics during shear band propagation. The more ductile in nature the metallic glass is, the slower the shear band propagating speed would become. We also made attempts to investigate the shear band propagation in the porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 bulk metallic glass composites (BMGCs) with up to 10% compressive failure strain. It was found that flow serration was absent in the stress-strain curve. Using high-sensitivity strain gauges, no distinct displacement burst was detected in the displacement-time profile. The diappearance of flow serration for the current porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 BMGC is apparently associated with the lack of long-range shear band propagagtion. By employing the approach of separating the homogeneous amorphous matrix into many individual compartments, only short-range shear band propgagation is possible in the current Mg-based BMGC. An effective free spacing considering the spacing between two porous Mo particles and porous Mo particle size was applied to interpret the development of shear band propagation and is a useful indicator for the design of BMGC with high ductility.
68

Hydrogen in NiZr metallic glasses

Cambron, André. January 1986 (has links)
No description available.
69

Magnetic properties of frustrated pyrochlore antiferromagnets.

Reimers, Jan Naess. Greedan, J. E. Unknown Date (has links)
Thesis (Ph. D.)--McMaster University (Canada), 1990. / Source: Dissertation Abstracts International, Volume: 53-01, Section: B, page: 0310. Supervisor: J.E. Greedan.
70

Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten

Martin, Morgana. January 2008 (has links)
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Thadhani, Naresh; Committee Member: Doyoyo, Mulalo; Committee Member: Kecskes, Laszlo; Committee Member: Li, Mo; Committee Member: Sanders, Thomas; Committee Member: Zhou, Min.

Page generated in 0.0962 seconds