• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evidence of amorphous/liquid phase separation in Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ alloy. / 非晶液態鈀-鎳-磷合金相位分離的證據 / Evidence of amorphous/liquid phase separation in Pd₄₁.₂₅Ni₄₁.₂₅P₁₇.₅ alloy. / Fei jing ye tai ba-nie-lin he jin xiang wei fen li de zheng ju

January 2011 (has links)
Yin, Weixin = 非晶液態鈀-鎳-磷合金相位分離的證據 / 殷瑋欣. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references. / Abstracts in English and Chinese. / Yin, Weixin = Fei jing ye tai ba-nie-lin he jin xiang wei fen li de zheng ju / Yin Weixin. / Acknowledgement --- p.i / Abstract --- p.ii / Contents --- p.iv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- A Brief Introduction to Metallic Glass --- p.1 / Chapter 1.2 --- Homogeneous Nucleation Frequency --- p.3 / Chapter 1.3 --- Heterogeneous Nucleation Frequency --- p.4 / Chapter 1.4 --- Spinodal Decomposition --- p.5 / Chapter 1.5 --- Conditions for Metallic Glasses Formation --- p.8 / Chapter 1.6 --- How to Get Large Undercooling --- p.9 / Chapter 1.7 --- Liquid Phase Separation --- p.10 / References --- p.12 / Figures --- p.13 / Chapter Chapter 2 --- Experimental Procedures and Techniques of Transmission Electron Microscopy --- p.18 / Chapter 2.1 --- Sample preparation --- p.18 / Chapter 2.1.1 --- Ni2P Preparation --- p.18 / Chapter 2.1.2 --- Alloying --- p.18 / Chapter 2.1.3 --- Fluxing --- p.18 / Chapter 2.2 --- Introduction to TEM Specimen Preparation --- p.19 / Chapter 2.2.1 --- "Grinding, Polishing and Punching" --- p.19 / Chapter 2.2.2 --- Final Thinning by Ion Miller --- p.20 / Chapter 2.2.3 --- Final Thinning by Twin Jet --- p.20 / Chapter 2.3 --- Introduction to Transmission Electron Microscopy Techniques --- p.21 / Chapter 2.3.1 --- Basic Instrumentations of TEM --- p.21 / Chapter 2.3.2 --- Elastic Scattering and Inelastic Scattering --- p.21 / Chapter 2.3.3 --- Image Contrast --- p.22 / Chapter 2.3.4 --- Dark Field Image and Bright Field Image --- p.24 / Chapter 2.3.5 --- EDX Mapping --- p.24 / Chapter 2.3.6 --- High Resolution Images --- p.25 / References --- p.26 / Figures --- p.27 / Chapter Chapter 3 --- Evidence of amorphous/liquid phase separation in Pd41.25Ni41.25P17.5 alloy --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.2 --- Experimental --- p.34 / Chapter 3.3 --- Discussions --- p.42 / References --- p.44 / Figures --- p.45 / Chapter Chapter 4 --- Conclusions --- p.68
2

Liquid phase separation in molten Pd-Ni-P alloy =: 熔融鈀-鎳-磷合金的液態相分離. / 熔融鈀-鎳-磷合金的液態相分離 / Liquid phase separation in molten Pd-Ni-P alloy =: Rong rong ba, nie, lin he jin de ye tai xiang fen li. / Rong rong ba, nie, lin he jin de ye tai xiang fen li

January 1996 (has links)
by Yuen Cheong Wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves [138]-[142]). / by Yuen Cheong Wing. / Acknowledgments --- p.ii / Abstract --- p.iii / Table of Contents --- p.v / Chapter Chapter 1: --- Introduction --- p.1-1 / Chapter 1.1 --- What is Metallic Glass? --- p.1-1 / Chapter 1.2 --- Use of Metallic Glass --- p.1-3 / Chapter 1.3 --- A Dilemma --- p.1-4 / Chapter 1.4 --- Glass Forming Ability --- p.1-5 / Chapter 1.5 --- Role of Liquid State Phase Separation in GFA --- p.1-6 / References --- p.1-9 / Figure --- p.1-10 / Chapter Chapter 2: --- Phase Separation Theory --- p.2-1 / Chapter 2.1 --- Free Energy Curve --- p.2-1 / Chapter 2.2 --- Nucleation and Growth --- p.2-2 / Chapter 2.2.1 --- Liquid state nucleation and growth --- p.2-2 / Chapter 2.2.2 --- Nucleation and growth during solidification --- p.2-4 / Chapter 2.3 --- Spinodal Decomposition --- p.2-5 / Chapter 2.3.1 --- Cahn-Hilliard linearized equation --- p.2-6 / Chapter 2.3.2 --- Temporal evolution --- p.2-9 / References --- p.2-12 / Figures --- p.2-15 / Chapter Chapter 3 : --- Experimental Setup and Techniques --- p.3-1 / Chapter 3.1 --- Technique in Achieving High Undercooling --- p.3 -1 / Chapter 3.1.1 --- Effects and limitation of B203 --- p.3-1 / Chapter 3.1.2 --- Preparation of B203 --- p.3-3 / Chapter 3.1.3 --- Cleansing of apparatus --- p.3-4 / Chapter 3.2 --- Experimental --- p.3-5 / Chapter 3.2.1 --- Sample preparation --- p.3-6 / Chapter 3.2.2 --- Experimental setup --- p.3-7 / Chapter 3.2.3 --- Procedures --- p.3-8 / Chapter 3.3 --- Observing the Microstructure --- p.3-9 / Chapter 3.3.1 --- Cutting --- p.3-10 / Chapter 3.3.2 --- Molding --- p.3-10 / Chapter 3.3.3 --- Polishing --- p.3-11 / Chapter 3.3.4 --- Etching --- p.3-12 / Chapter 3.3.5 --- Observation --- p.3-12 / References --- p.3-14 / Table --- p.3-15 / Figures --- p.3-16 / Chapter Chapter 4: --- Metastable liquid phase separationin undercooled molten PD40. 5]\l40.5P19 --- p.4-1 / Abstract --- p.4-1 / References --- p.4-9 / Figures --- p.4-10 / Chapter Chapter 5 : --- Transformation in undercooled molten PD40.5NI40.5P19 --- p.5-1 / Chapter 5.1 --- Abstract --- p.5-1 / Chapter 5.1 --- Introduction --- p.5-2 / Chapter 5.3 --- Experimental --- p.5-4 / Chapter 5.4 --- Results --- p.5-6 / Chapter 5.5 --- Discussions --- p.5-13 / References --- p.5-20 / Figures --- p.5-22 / Chapter Chapter 6 : --- Solidification of liquid spinodal in undercooled PD40.5NI40.5P19 --- p.6-1 / Chapter 6.1 --- Abstract --- p.6-1 / Chapter 6.2 --- Introduction --- p.6-2 / Chapter 6.3 --- Experimental --- p.6-3 / Chapter 6.4 --- Results --- p.6-5 / Chapter 6.5 --- Discussions --- p.6-10 / References --- p.6-17 / Figures --- p.6-18 / Chapter Chapter 7: --- Conclusion --- p.7-1 / References --- p.7-4 / Bibliography --- p.B-1
3

Formation of bulk nanocrystalline materials. / CUHK electronic theses & dissertations collection

January 1999 (has links)
by Guo Wenhua. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
4

Experimental measurement and finite element modeling of bioheat transfer with phase changes of molten metal in contact with porcine skin

Capt, William Michael 23 June 2011 (has links)
Not available / text
5

Analise termica na solidificação de ferros fundidos cinzentos hipoeuteticos / Thermal analysis on solidification of hypoeutectic gray cast iron

Silva, Jorge Ayrton da 13 February 2007 (has links)
Orientador: Amauri Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-08T17:48:12Z (GMT). No. of bitstreams: 1 Silva_JorgeAyrtonda_M.pdf: 5941604 bytes, checksum: 9ec8b76ce4cbb57c06994f1a8307f767 (MD5) Previous issue date: 2007 / A análise térmica é amplamente utilizada como método de controle de processos metalúrgicos e na investigação da composição química de ferros fundidos na prática de fundição. Um meio confiável de avaliação da composição de ferros fundidos é disponibilizado pela técnica do Carbono Equivalente, que é baseada na mudança de inclinação da curva de resfriamento na temperatura liquidus durante o resfriamento de uma amostra de ferro fundido a partir do estado líquido. O presente trabalho é focado no desenvolvimento de um novo sensor para análise térmica, um sensor de imersão, que objetiva contribuir com determinações mais confiáveis de composição durante as operações de fundição. Foram desenvolvidos experimentos em diferentes empresas de fundição, utilizando-se tanto o sensor de imersão quanto o tradicional sensor tipo cápsula, normalmente utilizado na prática de fundição. As comparações de composições químicas, medidas por essas duas técnicas e medidas fornecidas por análise de espectrometria de emissão óptica, demonstram que geralmente o sensor de imersão fornece resultados mais confiáveis. Uma análise térmica realizada durante o resfriamento de ferro fundido em um dispositivo unidirecional com uma coquilha, e utilizando um conjunto de termopares, permitiu também a determinação quantitativa de variáveis térmicas de solidificação, tais como: coeficientes transitórios de transferência de calor metal/molde e molde/ambiente e taxa de resfriamento à frente da isoterma liquidus / Abstract: Thermal analysis is a widely used method for metallurgical process control and investigation of alloy composition of cast irons in foundry practice. A reliable means of rapidly evaluating the composition of cast irons is available by the Carbon-Equivalent technique, which is based on the change in thermal arrest temperature of the liquidus as the sample of molten cast iron freezes. The present work focuses on the development of a new sensor for thermal analysis, a dip-sensor, wich aims to contribute to more reliable determination of alloy composition during casting operation. Experiments were carried-out in different foundries by using both the dipsensor and the traditional capsule-sensor, which is normally used in foundry practice. The comparison of alloy compositions measured by these two techniques with analysis performed by Arc/Spark spectrometry has shown that generally the dip-sensor provides more reliable results. Thermal analysis conducted during cooling of molten cast iron in a unidirectional chill apparatus, by using a set of thermocouples, has also permitted the quantitative determination of solidification thermal variables, such as: transient metal/mold and mold/ambient heat transfer coefficients and tip cooling rates / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica

Page generated in 0.1179 seconds