• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal fibre sensors for aerodynamic measurements

Kidd, Stephen Robert January 1994 (has links)
No description available.
2

Thermal measurement of turbulent wall shear stress fluctuations: tackling the effects of substrate heat conduction.

Assadian, Elsa 27 April 2012 (has links)
This thesis presents a computational analysis of multi-element guard-heated sensors designed to overcome the most severe limitation of conventional thermal sensors for wall shear stress (WSS) measurement in turbulent flows –that of indirect heat conduction through the substrate. The objectives of this thesis are the study of guard-heated sensors {i} to quantify the reduction, over conventional single-element sensors, of substrate heat conduction losses and resultant errors over a range of applied shear and {ii} to examine a range of values of guard heater geometric parameters, in two common fluids, air and water and identify the best designs. Wall-turbulence, the turbulent flow in the vicinity of solid boundaries, has proved difficult to model accurately, due to the lack of accurate WSS measurements. Examples of areas of impact are drag force reduction on transport vehicles in land, sea, air, which today largely translate to reduced fossil fuel use and dependence; aerodynamic noise and control for flight and for wind energy conversion; atmospheric and oceanic transport studies for weather, climate and for pollutant transport; riverbank erosion. Constant-temperature anemometry with MEMS devices, flush-mounted hot-film thermal sensors, is non-intrusive, affords the best temporal resolution and is well-established. However, these hot-film probes suffer from unwanted heat transport to the fluid through the substrate, with errors and nonlinearity large enough to overwhelm quantitative utility of the data. Microfabrication techniques have enabled multi-element guard-heated prototypes to be fabricated. Our results show that errors in sensing-element signals, contributing to spectral distortion, are sensitive to sensor location within the guard heater. These errors can be reduced to below 1% of the signal with proper location of the sensor. Guard heating also reduces the large variation in spatial averaging due to substrate conduction. This makes them suitable for turbulent flows with a large range of fluctuations. / Graduate
3

Desenvolvimento de um sistema calorimetrico para dosimetria de feixes de eletrons em processos por radiacao

BANADOS PEREZ, HOMERO E. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:17Z (GMT). No. of bitstreams: 1 05382.pdf: 3611357 bytes, checksum: aeefc0f052bf6399692f11e4b2ff1e2b (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
4

Desenvolvimento de um sistema calorimetrico para dosimetria de feixes de eletrons em processos por radiacao

BANADOS PEREZ, HOMERO E. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:17Z (GMT). No. of bitstreams: 1 05382.pdf: 3611357 bytes, checksum: aeefc0f052bf6399692f11e4b2ff1e2b (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
5

Analise termica na solidificação de ferros fundidos cinzentos hipoeuteticos / Thermal analysis on solidification of hypoeutectic gray cast iron

Silva, Jorge Ayrton da 13 February 2007 (has links)
Orientador: Amauri Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-08T17:48:12Z (GMT). No. of bitstreams: 1 Silva_JorgeAyrtonda_M.pdf: 5941604 bytes, checksum: 9ec8b76ce4cbb57c06994f1a8307f767 (MD5) Previous issue date: 2007 / A análise térmica é amplamente utilizada como método de controle de processos metalúrgicos e na investigação da composição química de ferros fundidos na prática de fundição. Um meio confiável de avaliação da composição de ferros fundidos é disponibilizado pela técnica do Carbono Equivalente, que é baseada na mudança de inclinação da curva de resfriamento na temperatura liquidus durante o resfriamento de uma amostra de ferro fundido a partir do estado líquido. O presente trabalho é focado no desenvolvimento de um novo sensor para análise térmica, um sensor de imersão, que objetiva contribuir com determinações mais confiáveis de composição durante as operações de fundição. Foram desenvolvidos experimentos em diferentes empresas de fundição, utilizando-se tanto o sensor de imersão quanto o tradicional sensor tipo cápsula, normalmente utilizado na prática de fundição. As comparações de composições químicas, medidas por essas duas técnicas e medidas fornecidas por análise de espectrometria de emissão óptica, demonstram que geralmente o sensor de imersão fornece resultados mais confiáveis. Uma análise térmica realizada durante o resfriamento de ferro fundido em um dispositivo unidirecional com uma coquilha, e utilizando um conjunto de termopares, permitiu também a determinação quantitativa de variáveis térmicas de solidificação, tais como: coeficientes transitórios de transferência de calor metal/molde e molde/ambiente e taxa de resfriamento à frente da isoterma liquidus / Abstract: Thermal analysis is a widely used method for metallurgical process control and investigation of alloy composition of cast irons in foundry practice. A reliable means of rapidly evaluating the composition of cast irons is available by the Carbon-Equivalent technique, which is based on the change in thermal arrest temperature of the liquidus as the sample of molten cast iron freezes. The present work focuses on the development of a new sensor for thermal analysis, a dip-sensor, wich aims to contribute to more reliable determination of alloy composition during casting operation. Experiments were carried-out in different foundries by using both the dipsensor and the traditional capsule-sensor, which is normally used in foundry practice. The comparison of alloy compositions measured by these two techniques with analysis performed by Arc/Spark spectrometry has shown that generally the dip-sensor provides more reliable results. Thermal analysis conducted during cooling of molten cast iron in a unidirectional chill apparatus, by using a set of thermocouples, has also permitted the quantitative determination of solidification thermal variables, such as: transient metal/mold and mold/ambient heat transfer coefficients and tip cooling rates / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
6

Occupancy Monitoring Using Low Resolution Thermal Imaging Sensors

Chidurala, Veena 08 1900 (has links)
Occupancy monitoring is an important research problem with a broad range of applications in security, surveillance, and resource management in smart building environments. As a result, it has immediate solutions to solving some of society's most pressing issues. For example, HVAC and lighting systems in the US consume approximately 45-50% of the total energy a building uses. Smart buildings can reduce wasted energy by incorporating networkable occupancy sensors to obtain real-time occupancy data for the facilities. Therefore, occupancy monitoring systems can enable significant cost savings and carbon reduction. In addition, workplaces have quickly adapted and implemented COVID-19 safety measures by preventing overcrowding using real-time information on people density. While there are many sensors, RGB cameras have proven to be the most accurate. However, cameras create privacy concerns. Hence, our research aims to design an efficient occupancy monitoring system with minimal privacy invasion. We conducted a systematic study on sensor characterization using various low-resolution infrared sensors and proposed a unified processing algorithms pipeline for occupancy estimation. This research also investigates low-resolution thermal imaging sensors with a chessboard reading pattern, focusing on algorithm design issues and proposing solutions when detecting moving objects. Our proposed approach achieves about 99% accuracy in occupancy estimation, enabling many practical smart building applications. We also added additional sensors to our system using sensor fusion technology to boost its functionality and demonstrated the system's feasibility by deploying it in different real-time application scenarios.
7

Générateurs thermoélectriques imprimés sur substrats souples à base de matériaux hybrides pour des applications autour de la température ambiante / Hybrid thermoelectric generators printed on flexible substrates for applications at near room temperature

Ferhat, Salim 12 June 2018 (has links)
Les dispositifs thermoélectriques, légers et flexibles, peuvent être particulièrement intéressants aujourd’hui dans le contexte de l’émergence de l’informatique ubiquitaire, ainsi que de la crise environnementale liée à la consommation d’énergie électrique. Cependant, beaucoup de problèmes doivent encore être résolus pour rendre les dispositifs de récupération de chaleur commercialement viables. Dans cette thèse nous avons élaboré une méthode de conception et de fabrication par impression jet d’encre de générateurs flexibles à base de semi-conducteurs organiques et hybrides. En premier lieu, les travaux ont été consacrés au développement de matériaux thermoélectriques efficaces, stables et synthétisés par voie liquide. Les stratégies d’optimisation employées reposent sur la modulation de la concentration de porteurs de charge et le contrôle de la morphologie microscopique du matériau. En second lieu, nous avons effectué un travail de conception et de modélisation de dispositifs thermoélectriques ainsi que de leurs paramètres géométriques en utilisant des outils numériques. La modélisation numérique a été réalisée par la méthode des éléments finis 3D et par couplage d’effets physiques multidimensionnels. L’aboutissement de notre projet a été la formulation des matériaux en encres pour la fabrication de générateurs thermoélectriques par la technique de dépôt par impression jet d’encre. Différentes structures et architectures ont été expérimentalement caractérisées et systématiquement comparées aux évaluations numériques. Ainsi, nous présentons une approche intégrale de conception et de fabrication de dispositifs thermoélectriques opérant à des températures proches de l’ambiant. / Flexible lightweight printed thermoelectric devices can become particularly interesting with the advent of ubiquitous sensing and within the context of current energy and environmental issues. However, major drawbacks of state of the art thermoelectric materials must be addressed to make waste heat recovery devices commercially feasible. In this PhD thesis, we’ve elaborated and described a method to fabricate optimized, fully inkjetprinted flexible thermoelectric generators based on organic and hybrid semiconductors. This research project can be divided into three stages: First is the development of effective, stable and solution-processed p-type and n-type thermoelectric materials. Our effort in optimizing thermoelectric materials were based on modulation of charge carrier concentration and on control of morphology. Second, design and modeling of thermoelectric devices and their geometric parameters using numerical simulation methods. Numerical simulations were based on a 3D-finite element analysis and simulation software for coupled physical problems to model and design thermoelectric devices. Finally, formulation of materials into ink in order to produce thermoelectric generators by inkjet printing deposition. Various structures and architectures were experimentally characterized and systematically compared to numerical evaluations. Hence, we produced an extensive study on designing and producing thermoelectric devices operating at near ambient temperature and conditions.
8

The design, numerical modelling and development of MEMS fabrication process of micro bolometer for use in long wave infrared detection.

Senda, Paul Tudieji January 2013 (has links)
Master of Technology: Mechanical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology Supervisor:Prof Philander Oscar Bellville Campus Date of submission: April 2013 / The Advanced Manufacturing Technology Strategy (AMTS), predecessor of the Technology Innovation Agency, was a national strategy focused principally on improving collaboration amongst industry, academia and science councils. The aerospace industries and training institutions in particular have been identified as key thrust areas for achieving economic development through the AMTS. Furthermore, the AMTS Aerospace Interest Group has been identified as one of the most important facets of Micro and Nano Manufacturing, Sensors and Electronics Flagship Program. The manufacturing of Micro and Nano Electronics and sensors is essential for South Africa to sustain the technology capability development as seen in developed countries. For example, there is an urgent need to establish a Photo Lithography facility for South African industry and training Institutions. The demand for the new generations of industrial, military, commercial, medical, automotive and aerospace products in South Africa in particular, and in the world in general, has fuelled research and development activities focused on advanced and smart materials. This situation has allowed for the emergence of a new generation of infrared sensors, the bolometer, based on an infrared thermal detection mechanism which is particularly suited to operate at ambient temperature, opening opportunities for achieving low cost infrared imaging systems for both military and commercial applications. This work deals with different South African bolometer membranes of the second prototype in collaboration with the University of Pretoria and Denel Optronics. The bolometer is an infrared thermal sensor that measures thermal radiation by converting said radiation into a temperature change and subsequently measuring the induced change in electrical resistance. The term infrared from Latin Infra, meaning below, is usually applied to wavelengths between 700nm and 1mm. It can be argued that the first occurrence of infrared sensing actually goes back several millennia, when men placed their hands over recently extinguished fire. However, until Herschel’s experiment, this kind of infrared was between the sun and the earth. Thermal imaging, which refers to the ability to measure the temperature of different points on a scene, requires either an array of infrared detectors operating in those wavelength ranges or a way to scan a scene using a single detector. To realise this work, objectives have been assigned to different groups of the consortium represented by CPUT, UP and Denel. Analyses of thirteen bolometer membranes including metal bolometer (Titanium) and Vanadium oxide were assigned to CPUT, reason why this thesis focuses on the modelling, designing and testing of the bolometer membranes. Masks design of the second prototype bolometer test structures includes several thermally isolated bolometer devices. These devices have been modelled and analysed in order to study their electrical and thermal behaviour. / Cape Peninsula University of Technology University of Pretoria Denel Optronics
9

Dresdner Beiträge zur Sensorik

25 July 2017 (has links)
Seit 1996 wird von Prof. Dr.-Ing. habil. Gerald Gerlach die Buchreihe „Dresdner Beiträge zur Sensorik“ herausgegeben, in der herausragende wissenschaftliche Beiträge der Technischen Universität Dresden, insbesondere auch des Institutes für Festkörperelektronik, publiziert werden. Zu den bisher vorliegenden Bänden sind seitdem weitere Bände hinzugekommen. Das Profil des Institutes wird durch folgende Forschungsgebiete geprägt: Thermische Infrarotsensoren, Piezoresistive Sensoren auf der Basis quellfähiger Hydrogele, Ultraschalltechnik, Funktionelle Dünnschichten, Nanoptische Sensoren. Mit der Berufung von Prof. Dr.-Ing. habil. Gerald Gerlach auf den Lehrstuhl für Festkörperelektronik zum 01.01.1996 wurde das Spektrum der Forschungsarbeiten insbesondere um die Fachgebiete der Siliziumsensoren für unterschiedliche Meßgrößen und des Entwurfs komplexer Sensor- und Aktor-Systeme in der Mikrosystemtechnik erweitert. Das Zusammenwirken von Physik, Elektronik und Technologie der Mikroelektronik bei Forschung, Entwicklung und Fertigung sowie Applikation leistungsfähiger Sensoren ist Gegenstand von Lehre und Forschung des IFE. / Since 1996 the book series „Dresdner Beiträge zur Sensorik“ edited by Prof. Dr.-Ing. habil. Gerald Gerlach has been published. The aim of this series is the publication of outstanding scientific contributions of TU Dresden, especially of those compiled at the Institute for Solid-State Electronics. The Solid-State Electronics Laboratory (Institut für Festkörperelektronik - IFE) is one of 12 laboratories of the Electrical and Computer Engineering Department at Technische Universität Dresden. Together with the Semiconductor Technology and Microsystems Lab and several chairs of the Circuits and Systems and the Packaging Labs, the Solid-State Electronics Laboratory is responsible for the microelectronics specialization in the Electrical Engineering program. Research and teaching field of the Institute for Solid-State Electronics are dedicated to the interaction of physics, electronics and (microelectronics) technology in: materials research, technology, and solid state sensor operational principles, application of sensors for special measurement problems, design of sensors and sensor systems including the simulation of components as well as of complex systems, development of thin films and multilayer stacks for sensor applications, application of ultrasound for nondestructive evaluation, medical diagnostics and process measurement technology.
10

Towards small scale sensors for turbulent flows and for rarefied gas damping

Ebrahiminejad Rafsanjani, Amin 02 January 2018 (has links)
This thesis makes contributions towards the development of two different small-scale sensing systems which show promise for measurements in fluid mechanics. Well-resolved turbulent Wall Shear Stress (WSS) measurements could provide a basis for realistic computational models of near-wall turbulent flow in aerodynamic design. In aerodynamics field applications, they could provide indication of flow direction and regions of separation, enabling inputs for flight control or active control of wind-turbine blades to reduce shock and fatigue loading due to separated flow regions. Traditional thermal WSS sensors consist of a single microscale hot-film, flush-mounted with the surface and maintained at constant temperature. Their potential for fast response to small fluctuations may not be realized, as heat transfer through the substrate creates heat-exchange with fluid, leading to loss of spatial and temporal resolution. The guard-heated thermal WSS sensor is a design introduced to block this loss of resolution. A numerical flow-field with a range of length and time and scales was generated to study the response of both guard-heated and conventional single-element thermal WSS sensors. A conjugate heat transfer solution including substrate heat conduction and flow convection, provides spatiotemporal data on both the actual and the “measured” WSS fluctuations calculated from the heat transfer rates experienced due to the WSS field. For a single-element sensor in air, we found that the heat transfer through the substrate was up to six times larger than direct heat transfer from the hot-film to the fluid. The resulting loss of resolution in the single-element sensor can be largely recovered by using the guard-heated design. Spectra for calculated WSS from heat transfer response show that high frequencies are considerably better resolved in guard-heated sensors than in the single element sensor. Nanoresonators are nanowires (NWs) excited into mechanical vibration at a resonance frequency, with a change in spectral width created by gas damping from the environment, or a shift in the resonance peak frequency created by added mass. They enable a wide range of applications, from sensors to study rarefied gas flow friction to the detection of early-stage cancer. The extraordinary sensitivity of nanoresonators for disease molecule detection has been demonstrated with a few NWs, but the high cost of traditional electron-beam lithography patterning, have inhibited practical applications requiring large arrays of sensors. Field-directed assembly techniques under development in our laboratory enable a large number of devices at low cost. Electro-deposition of metals in templates yields high-quality single nanowires, but undesired clumps must be removed. This calls for separation (extraction) of single nanowires. In this work, single nanowires are extracted by using the sedimentation behavior of particles. Based on numerical and experimental analyses, the optimum time and region for extracting samples with the highest fraction of single nanowires ratio was found. We show that it is possible to take samples free of large clumps of nanowires and decrease the ratio of undesired particles to single nanowires by over one order of magnitude. / Graduate

Page generated in 0.0515 seconds