• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 421
  • 39
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 475
  • 475
  • 456
  • 454
  • 454
  • 454
  • 80
  • 60
  • 44
  • 38
  • 28
  • 28
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Effect of oxygen concentration in build chamber during laser metal deposition of Ti-64 wire

Engblom, Eyvind January 2018 (has links)
Additive manufacturing of titanium and other metals is a rapidly growing field that could potentially improve component manufacturing through optimization of geometries, less material waste and fewer process steps. Although powder-based additive manufacturing processes have so far been predominant, methods using a wire as feedstock has gained popularity due to faster deposition rates and lower porosity in deposited material. The titanium alloy Ti-6Al-4V accounts for the majority of aerospace titanium alloy consumption and as titanium is a precious and expensive resource, reducing material waste is an important factor.  Laser metal deposition with wire (LMD-w) is currently used in production at GKN Aerospace in Trolhättan. One important process parameter is the oxygen level in the chamber during deposition as titanium is highly reactive with oxygen at process temperatures. Oxygen enrichment of titanium can cause embrittlement and reduced fatigue life due to formation of alpha-case, an oxygen enriched region directly beneath the surface. The oxygen level in the chamber is controlled through extensive use of protective inert gas which is a costly and time-consuming practice. The objective of this thesis was to study how elevated oxygen levels in the chamber would affect surface oxidation, chemical composition, tensile properties and microstructure.  Two different sample geometries were built with Ti-6Al-4V wire at an oxygen level of 100, 500 and 850 ppm. The subsequent analysis was based around microstructural features, alpha-case formation, chemical composition in surface layers, and tensile tests. Results showed that elevated oxygen levels in the build chamber did not degrade the chemical composition or tensile properties with regard to aerospace specifications. However, significant layers of alpha-case were found in all samples indicating that subsequent processing such as machining or etching is needed.
212

What If We Tilt the AOD? : Developing a numerical and physical model of a downscaled AOD converter to investigate flow behaviour when applying an inclination.

Chanouian, Serg January 2019 (has links)
In a scrap based stainless steel plant the dominant process for carbon reduction is the Argon oxygen decarburisation process (AOD). The process goes through three steps: decarburisation, reduction and desulphurisation where the main challenge is to oxidise carbon to CO without oxidising the expensive chromium. The general practical approach is to inject a mixture of oxygen and an inert gas, like argon or nitrogen, through tuyeres at the converter side starting with a high amount of oxygen gas which followingly is reduced as the inert gas is increased during the decarburisation steps. This allows for a decrease in partial pressure for the CO bubbles which is thermodynamically favourable for carbon oxidation. Recent studies have shown that an aged AOD converter with a worn lining can decarburise the melt faster than a fresh vessel due to favourable thermodynamic conditions occurring since the bath height is lower in the aged converter. The studies show 8-10% savings of oxygen gas which have led to an interest to study the matter. One of two approaches are taken in the present work with the focus to develop a numerical model that simulates a downscaled AOD converter with applied inclinations that is to be validated through physical modelling. A 75-ton industrial converter was downscaled for water-air experiments where three inclination angles namely 0, 5.5 and 14° were studied with focus on mixing time and penetration length. The physical model was replicated for computational fluid dynamics (CFD) modelling using the Euler-Euler approach in ANSYS Fluent. The models show rather good similarities when comparing gas penetration length, flow structure and mixing time however needs some complementary work and final adjustments before upscaling as well as coupling with thermodynamic modelling can be done. / Den dominerande processen för kolfärskning vid skrot baserad rostfri ståltillverkning är AOD- processen (Argon Oxygen Decarburisation). Processen går igenom tre steg, kolfärskning, reducering av krom och svavelrening där de största utmaningarna ligger i att oxidera kol utan att oxidera krom. I praktiken gör detta genom att injicera en blandning av argon och syrgas från sidan av AOD-konvertern för att sänka partial trycket av den kolmonoxid som bildas när kol oxideras. Syftet är att göra det mer termodynamiskt fördelaktigt att oxidera kol i systemet. Den injicerade blandgasen har olika förhållanden under kolfärskning med en hög andel syrgas i början som sedan sänks genom processen tills bara argon injiceras. Tidigare studier har visat att kolfärskningen är en funktion av konverterns ålder där ju äldre en konverter är desto snabbare går kolfärskning. Enligt studierna har det visats att 8-10% mindre syrgas eller användning av reducerings medel kan uppnås i en gammal konverter vilket har väckt ett intresse för vidare studier. I detta arbete har en av två metoder prövats för att undersöka om man kan applicera det som sker i en gammal konverter till en ny. En numerisk modell av en nerskalad AOD-konverter har utvecklats och validerats mot en vattenmodell då konvertern vinklas. En 75-tons konverter nerskalades till en vattenmodell där vinklarna 0, 5.5 och 14° studerades med fokus på blandningstid och penetrations djup. Vattenmodellen gjordes om till en numerisk modell som använde Euler-Euler metoden i ANSYS Fluent. Modellerna visade likheter gällande penetrationsdjup, flödes struktur och blandnings tid men kräver en del justeringar innan en uppskalning samt koppling till termodynamisk modellering kan ske.
213

Quantification of tribological effects in expansion fasteners

Drahorad, Nicolò January 2019 (has links)
Post-installed anchors for civil construction are elements that ensure the integrity of building structures even under the most severe static, seismic and shock loadings. Despite the high popularity of this technology in construction sites all over the world, the current state of knowledge is limited and there is still a great potential for significant improvements. Specifically, expansion anchors’ mechanism relies purely on friction, therefore being able to manipulate and optimize their tribological behavior is key to meet strict safety regulations and develop outperforming and outlasting design solutions. This research project, conducted at Hilti Corporation in Schaan (Liechtenstein), presents an investigation of several antifriction coating solutions. Laboratory-scale tests have been performed to quantify the different coefficient of friction while, with full-scale standardized tests (anchor set in concrete), it has been possible to evaluate the overall mechanical performances of the specimens. Afterwards, the obtained data have been analyzed with numerical software and the samples have been further investigated with optical microscopy. The outcome of this thesis work is crucial for the development of the next generation of expansion fasteners and gives additional insights for a deeper understanding in the tribology of functional coatings. / Eftermonterade fästankare i byggnader säkerställer byggnadsstrukturernas integritet, även under de mest allvarliga statiska, seismiska och chockbelastningar. Trots stor användning och popularitet  på byggarbetsplatser över hela världen är det nuvarande kunskapsläget av denna teknik begränsat och det finns en stor potential för betydande förbättringar. Specifikt bygger expansionsankringsmekanismen på ren friktion. Därför är möjligheten att manipulera och optimera fästankarnas tribologiska beteende nyckeln till att uppfylla strikta säkerhetsbestämmelser och kunna utveckla bättre prestanda och designlösningar. Detta forskningsprojekt har utförts på Hilti Corporation i Schaan (Liechtenstein) och presenterar en undersökning av flera antifriktionsbeläggningslösningar. Laboratorieprov har utförts för att kvantifiera olika friktionskoefficienter, och efter fullskaliga standardiserade tester (med fästankare i betong) har det varit möjligt att utvärdera de övergripande mekaniska prestationerna av dessa. Erhållna data har analyserats numerisk och proverna har undersökts ytterligare med optisk mikroskopi. Resultatet av detta examensarbete är viktigt för utvecklingen av nästa generation expansionsfästen och ger även ytterligare insikt och en djupare förståelse av tribologin av funktionella beläggningar.
214

Prediction of Process Parameters for Powder Bed Fusion Using Electron Beam

Haglund, Teodor January 2020 (has links)
The Powder Bed Fusion using Electron Beam (PBF-EB) process is a highly complex additive manufacturing process. There are a very limited number of materials that have been used successfully, which limits the applications of the process, despite its well-documented advantages over conventional manufacturing. However, the development of new materials is hindered due to a lack of understanding of the fundamental phenomena in the process. The goal of this work has been to develop a model that is able to predict the process parameters that will lead to the manufacture of a fully dense component.   The model is based on 1285 empirical datasets of process parameters and the physical properties of the printed materials. Nine different materials were included in the data. By inputting a pre-defined set of process parameters and materials properties the model will output the beam power at which it is predicted a dense component may be manufactured. This novel approach will shorten the development of new process parameters by providing a first approximation of suitable parameters to iterate from. A tool steel powder supplied by Uddeholms AB was printed, using parameters proposed by the model. Two sets of pre-defined process parameters were used with several beam velocities and resulted in a number of correct predictions.   This model is a first step in predicting process parameters and presents a simple, transparent and new method of obtaining the process window for novel materials in Powder Bed Fusion using Electron Beam. / Powder Bed Fusion med Electron Beam (PBF-EB) är en mycket komplex additiv tillverkningsprocess. Det finns ett fåtal antal material som går att använda i processen. Detta är ett förhinder för applikationer trots processens väldokumenterade fördelar över konventionell framställning. Framtagning av nya material är dock hejdad på grund av okunskap kring de grundläggande fenomenen inom processen. Målet med detta arbete har varit att utveckla en modell som kan förutse processparametrar vilka ger helt kompakta komponenter.   Modellen är baserad på totalt 1285 data uppsättningar av processparametrar och de fysiska egenskaperna av de printade materialen. Data på nio olika material har samlats in. Genom att mata in ett par förbestämda processparametrar och materialets specifika materialegenskaper så beräknar modellen kraften på strålen vid vilken det förutspås att goda resultat framställs. Denna nya metod kortar ned tiden inom traditionell processparameterutveckling genom att bistå med en första iteration att arbeta utifrån. Ett verktygsstålspulver tillverkat av Uddeholms AB vart printat med hjälp av modellen. Två uppsättningar av förbestämda processparametrar användes vid flera olika stråles hastigheter och resulterade i åtskilliga lyckade förutsägelser.   Denna modell är ett första steg i att förutspå processparametrar och presenterar en simpel, transparant och ny metod till att finna process fönstret för nya material i Powder Bed Fusion med Electron Beam processen.
215

Influence of Stirring on the Inclusion Characteristics during Vacuum Degassing in a Ladle

Médioni, Charlotte January 2015 (has links)
Steel cleanliness as a function of stirring practice during vacuum degassing treatment have been investigated in industrial studies at the steel plants of SSAB Special Steels in Oxelösund and Uddeholm AB in Hagfors. The cleanliness was examined with regards to the contents of sulphur, nitrogen and large inclusions (&gt;10µm). The stirring practice during the vacuum degassing treatment has been studied with respect to time, namely by shortening the vacuum degassing treatment time from 24 to 15 minutes. Furthermore, the effect of the stirring intensity was studied by measuring the open eye zone using camera recordings. The focus has been to study the effect of a shortened vacuum degassing time as well as a controlled stirring intensity on the steel cleanliness. Moreover, study the effect of subsequent induction stirring, after vacuum degassing, on the amount of inclusions. By taking steel and slag samples taken before and after the vacuum degassing treatment, the different stirring practices could be investigated. It should be noted that all heats reached the desired composition regardless of the treatment time and stirring practice. The results from the trials at SSAB Special Steels showed that the stirring practice during vacuum degassing have an effect on the total number of inclusions. The strong argon stirring during vacuum degassing with visible open eyes resulted in an average increase of 400% of the total amount of inclusions &gt;10µm. However, no difference between a vacuum degassing time of 24 or 15 minutes was seen with respect to the increased amount of inclusions, denitrogenization or desulphurization. During the subsequent induction stirring, which was softer with no open eyes, the effect of the stirring practice was unclear due to overlapping confidence intervals. An average decrease of 65% of the total amount of inclusions &gt;10 µm was seen for the heats  with non-overlapping confidence intervals. Based on these results it can be suggested that the use of a soft induction stirring after the vacuum degassing treatment as a possible process change to reach lower amounts of large inclusions. The stirring intensity during the vacuum degassing treatment was measured as the average ladle eye size during the trials at Uddeholm AB. This, due to that stronger stirring results in larger ladle eye zone. The results show that the amount of smaller inclusions (&lt;11.2 μm) decrease by up to 90% compared to the original amount, regardless of the stirring intensity. A stronger stirring showed tendency to increase the amount of large inclusion (&gt;22.4 μm). Moreover, the denitrogenization and desulphurization was not affected by the changed stirring intensity during vacuum degassing. It was also found that the average ladle eye size did not correlate to the logged average argon flow. / <p>QC 20150522</p>
216

Influence of Ladle-slag Additions on BOF-Process Parameters

Dahlin, Anders January 2011 (has links)
The influence of ladle-slag additions on the BOF-process performance were investigated in plant trials. The aim of the study was to recycle ladle slag from secondary steelmaking to the LD-converter to save lime and improve the slag formation. More specifically, two plant trial campaigns covering in total 83 heats, whereof 47 with ladle-slag additions and 36 without ladle-slag additions, were performed.  Slag and steel sampling of the process were performed at tapping as well as during blowing at 15, 35, and 65% of the total blowing time. During the first campaign, ladle slag was added through the chute and lime reductions were made manually to correct for the ladle-slag addition.  In the second campaign, a development of the approach was made to suite a normal production practice. More specifically, the ladle slag was added through the weight-hopper system and implemented in the process-control system. In this way, the lime additions were reduced automatically by approximately 260 kg per heat. Moreover, the heat balance was compensated with a reduction in the iron-ore consumption. Additionally, the lance program was modified and the lance was lowered in the initial stages of the blow.  On the positive side, it was found that no demerits in the metallurgical performance of the process occur when ladle slag is recycled to the BOF-process. Furthermore, only slight affections on the slag composition were found, mainly with respect to the Al2O3 and FeO-content. In addition, the ladle slag was shown to melt during the initial stages of the blow. This contributed to an increased slag weight both during the blow and at tapping. However, a negative effect on the blowing time was experienced during the trials. Although, this effect was more pronounced during the first campaign and could be reduced with a controlled heat balance during the second campaign. / QC 20110503
217

A Numerical Investigation on VOD Nozzle Jets

Song, Zhili January 2011 (has links)
The metallurgic process, Vacuum Oxygen Decarburization (VOD) process, is used for producing stainless steels with ultra-low carbon grades. In a VOD process, an oxygen lance is equipped with a De Laval nozzle which injects high speed oxygen gas. The aim of this work is to increase the knowledge of the flow behavior in the harsh environment of VOD vessels. Two real VOD nozzles from industry were numerically studied and compared at different temperatures and ambient pressures.  Flow patterns of the oxygen jet under different ambient pressures were studied and the flow information at different positions from the nozzle was analyzed. In addition, the study compared the effects of different ambient temperatures on the jet velocity and the dynamic pressure. The predictions revealed that the modeling results obtained with the CFD modeling showed an incorrect flow expansion, which agreed well with the results from the De Laval theory. Moreover, a little under-expansion is somewhat helpful to improve the dynamic pressure. The jet dynamic pressure and its width for the specific nozzle geometry have also been studied. It has been observed that a variation in the ambient pressure can influence the jet momentum and its width. In addition, a high ambient temperature has a positive effect on the improvement of the jet dynamic pressure. For the comparison between the two nozzles concerned, the modeling results showed that one of the nozzles was more applicably proper for lower pressures, displaying a more stable flow pattern. Furthermore, it was found that a change in ambient pressure has a stronger effect on the jet force than a change in ambient temperature. In addition, it was proved that the profiles of the dynamic pressure at a certain blowing distance fit well to Multi-Gaussian curves. / QC 20110920
218

Getting a Grip on Scrap : Applying Probability and Statistics in Analyzing Scrap and Steel Composition Data from Electrical Steel Production

Seyedali, Seyed Mohamad January 2013 (has links)
This study intends to better control the final composition of steel by trying to have a better knowledge of elements including copper, nickel, molybdenum, manganese, tin and chromium in the scrap. This objective was approached by applying probability and statistical concepts such as normal distribution, multiple linear regression and least square and non-negative least square concepts. The study was performed on the raw materials’ information of Ovako Smedjebacken and Ovako Hofors, two steel production plants in Sweden. The information included but were not limited to the amount of the different scrap types used in the charge, total weight of the charge and the final composition of the produced steel.  First, the concept of normal distribution was used as to consider the variations of the alloying elements between the estimated and measured alloy contents. The data were then used to consider a model for distribution factor of the studied elements. Also, an estimation of the alloy contents in the scrap type given the final steel composition was carried out using the concept of probability and statistics. At the end, a comparison of the results from the different concepts was done.
219

Acid neutralization using steel slags : Adsorption of fluorides in solutions using AOD slags

Larsson, Jesper January 2015 (has links)
Surface treatment processes of stainless steel, such as pickling, produces acidic waste water consisting of Na⁺, Cl⁻, F⁻, NO⁻3, SO42-, PO43-, Fe3+, Cr6+ and Ni2+. At Sandvik ABs steel works in Sandviken, this waste water is treated and neutralized using slaked lime before being released into the lake Storsjön. The aim of this report was to make a literary review of previous work in using slag as a neutralizing agent for acidic waste water. Furthermore, to see if it’s possible to replace some or all of the slaked lime in the neutralization process with slag and to study what slag that might be suitable to use. Since the waste water contains HF acid, the focus of this report was on different materials used for fluoride adsorptions. The literary study showed that the fluoride adsorption process with BOF slag, quick lime and magnesium oxide as adsorbents were endothermic. Therefore, it benefitted from an increased temperature. Furthermore, the literature study showed that many materials follow a pseudo-second-order kinetic model as well as a Langmuir or Freundlich isotherm for a fluoride adsorption. A previous experiment showed that a mixture of BF slag and slaked lime had the best HF acid neutralization among the tested materials. A fluoride adsorption experiment was made at different temperatures (25 – 55 °C) by using a slag from an aluminium reduced steel melt and a slag from a silicon reduced steel melt from the AOD converter in Sandviken. The silicon reduced steel melt slag showed an increase of fluorides in the solution, due to the presence of calcium fluoride in the slag. This was observed for all temperatures. The aluminium reduced steel melt slag also increased the fluoride content in the solution at 25 and 30 °C. At higher temperatures the fluoride content in the solution decreased with 93.6 to 94.9 %. Na⁺, Cl⁻, F⁻, NO⁻3, SO42-, PO43-, Fe3+, Cr6+, and Ni2+
220

Inclusion Characteristics and Their Link to Tool wear in Metal Cutting of Clean Steels Suitable for Automotive Applications

Ånmark, Niclas January 2015 (has links)
This thesis covers some aspects of hard part turning of carburised steels using a poly‑crystalline cubic boron nitride (PCBN) cutting tool during fine machining. The emphasis is on the influence of the steel cleanliness and the characteristics of non‑metallic inclusions in the workpiece on the active wear mechanisms of the cutting tool. Four carburising steel grades suitable for automotive applications were included, including one that was Ca‑treated. A superior tool life was obtained when turning the Ca-treated steel. The superior machinability is associated with the deposition of lubricating (Mn,Ca)S and (CaO)x-Al2O3-S slag layers, which are formed on the rake face of the cutting tool during machining. Moreover, the transfer of work material to the rake face crater is characteristic in hard part turning of clean steels. It can be because of the lack of sulfides that protect the cutting edge when turning machinability treated steels. This corresponds to the more pronounced crater wear caused by the low‑sulfur steels than that of the steels with higher sulfur contents. It was also concluded that the composition of the non‑metallic inclusions in the Ca‑treated steel is a more important factor than the inclusion number and size, in hard part turning using a PCBN cutting tool. Also, a 3D analysis after electrolytic extraction was found to give a more precise characterisation of non‑metallic inclusions than the conventional 2D analysis by SEM‑EDS. In turn, better correlations to machinability and mechanical properties can be obtained. Hence, the use of this technique is beneficial for future material development. Finally, the challenge for future metallurgy is to manufacture high‑performance steels with improved combined properties of mechanical strength and machinability. / <p>QC 20150422</p>

Page generated in 0.1281 seconds