Spelling suggestions: "subject:"etallic oxides corrosion"" "subject:"etallic oxides eorrosion""
1 |
Stress-diffusion interaction during oxide scale growth on metallic alloysZhou, Honggang 07 July 2010 (has links)
When a metallic alloy is placed in an oxygen environment, oxide scale may be formed on the metal surface. The continuous growth of such oxide scale is enabled by the diffusion of various ionic species in the scale layer primarily driven by the gradient of chemical potentials of these ionic species. In addition, the molar volume of oxide is typically greater than that of the base metal. Consequently, mechanical stresses are generated in the oxide scale. Such mechanical stress, in return, may affect the diffusion of ionic species resulting in different oxide growth kinetics. Such interaction between ionic diffusion and mechanical stresses and its effect on oxide scale growth have not been studied.
The goal of this thesis is to develop a systematic model for oxide scale growth that takes into account the diffusion-stress interaction. To achieve this goal, the coupled equations based on continuum formulas for diffusion and stresses are developed in first part of this study. The chemical potentials are defined as a stress dependent function. The variation of stress can therefore change the diffusion force, which is the gradient of chemical potentials, to affect the ionic species distribution and consequently have effects on the oxidation kinetics. The model is used to investigate several important aspects of oxidation including scale growth kinetics, stress distribution in the oxide scale, void formation near the metal/oxide interface, and initiation of oxide scale spallation.
The reactive element effect (REE) during oxidation of reactive element doped alloy is extensively studied in this study using the developed stress-diffusion interaction model. The key information, such as the modification effects of reactive element upon the diffusion properties of ionic species in oxide scale are quantitatively accessed for yttrium doped Cr alloy. Finite element method was used through a User Element subroutine for ABAQUS to solve the fully coupled stress-diffusion equations in 2D domains with accounting for both elastic and inelastic deformations. The REEs are comprehensively investigated by studying the effects of yttrium on interfacial delamination driving force, energy release rate (G), oxide-alloy interface morphology, and defect diffusion.
The outcomes of this study give (1) a deeper understanding of how stresses affect the oxidation, (2) a model to simulate oxide scale growth, and (3) design guidelines on rare earth element doping for improving oxidation resistance. The results of this work elucidate the impact and importance of stress-diffusion coupling on oxidation kinetics and mechanical reliability.
|
2 |
Modeling and simulation of stress-induced non-uniform oxide scale growth during high-temperature oxidation of metallic alloys.Saillard, Audric 25 March 2010 (has links)
The metallic alloys employed in oxidizing environment at high temperature rely on the development of a protective oxide scale to sustain the long-term aggressive exposition. However, the oxide scale growth is most of the time coupled with stress and morphological developments limiting its lifetime and then jeopardizing the metallic component reliability. In this study, a mechanism of local stress effect on the oxidation kinetics at the metal/oxide interface is investigated. The objective is to improve the understanding on the possible interactions between stress generation and non-uniform oxide scale growth, which might result in a precipitated mechanical failure of the system. Two different oxides are studied, alumina and chromia, in two different industrial systems, thermal barrier coatings and solid oxide fuel cell interconnects. A specific thermodynamic treatment of local oxide phase growth coupled with stress generation is developed. The formulation is completed with a phenomenological macroscopic framework and a numerical simulation tool is developed allowing for realistic analyses. Two practical situations are simulated and analyzed, concerning an SOFC interconnect and a thermal barrier coating system, for which oxide scale growth and associated stress and morphological developments are critical. The consequence of the non-uniform oxide growth on the system resistance to mechanical failure is investigated. Finally, the influences of material-related properties are studied, providing optimization directions for the design of metallic alloys which would improve the mechanical lifetime of the considered systems.
|
Page generated in 0.0796 seconds