• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 3
  • Tagged with
  • 23
  • 23
  • 21
  • 16
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ni-free Ti-based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior

Zheng, Na 30 July 2013 (has links) (PDF)
Metallic glasses are amorphous alloys that do not possess long-range structural order in contrast to crystalline alloys. Ni-free Ti-based bulk metallic glasses (BMGs) have potential for biomedical applications due to their attractive properties such as high strength, good corrosion resistance and excellent micro-formability, which cannot be obtained for conventional crystalline alloys. In this PhD thesis, Ni-free Ti-based BMGs, i.e. Ti40Zr10Cu34Pd14Sn2 and Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8), were prepared in the shape of rods by suction casting. Both alloy classes were systematically characterized in terms of glass forming ability, thermal stability, phase formation and mechanical properties. The largest diameter obtained in the fully glassy state for Ti40Zr10Cu34Pd14Sn2 alloy is 3 mm and for Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) alloys is 2 mm. Base alloy (Ti40Zr10Cu36Pd14) contains some crystalline phase(s) in the glassy matrix for a 2 mm diameter rod. The structural transformations of Ti40Zr10Cu34Pd14Sn2 BMG upon heating were thoroughly analyzed by utilizing different combination of methods. Firstly, we used differential scanning calorimetry (DSC), X-Ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate the first crystallization event. The main products of the first crystallization are possibly -(Ti, Zr) and Cu3Ti (orthorhombic) phases. Secondly, we employed in situ x-ray diffraction in transmission mode using synchrotron beam to deeply study the thermally-induced structural changes like relaxation, glass transition and crystallization. Since the first peak in the diffraction patterns reflects the structure of the glassy phase on the medium-range scale, the position, width and intensity of this peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width and intensity values show a nearly linear increase with increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and glass transition temperature Tg. The changes in the free volume, which was arrested during rapid quenching of the BMG, and the coefficient of volumetric thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals. For the Ti40Zr10Cu34Pd14Sn2 alloy, 2 mm diameter rods exhibit the best combination of mechanical properties (e.g. large plastic strain and high yield strength) among all the diameters (ø2, ø3 and ø4 mm) under the room-temperature compression tests. With the aim to improve its room-temperature mechanical properties, the processes of pre-annealing and cold rolling have been applied for the 2 mm diameter rods. Annealed and quenched specimens below Tg and in the supercooled liquid region (between Tg and onset crystallization temperature Tx) do not lead to the enhancement of the plasticity compared to as-cast alloys due to annihilation of excess free volume and crystallization. Cold rolling can effectively improve the plasticity of this BMG by inducing structural heterogeneities. Rolled samples up to a thickness reduction of 15% result in the largest plasticity of 5.7%. Low yield strength and visible work hardening ability are observed in the both 10%-rolled and 15%-rolled samples. The deformation behavior of Ti40Zr10Cu34Pd14Sn2 BMG at the elevated temperatures slightly below Tg and in the supercooled liquid region has been investigated. The stress-strain relations for this BMG over a broad range of temperatures (298 ~716 K) and strain rates (10-5 to 10-3 s-1) were established in uniaxial compression. Under compression tests at the highest test temperature of 716 K, the Ti-based BMG partially crystallizes and low strain rates can lead to the formation of larger volume fractions of crystals. In order to further improve the plasticity of Ti-Zr-Cu-Pd BMGs and simultaneously reduce the content of Cu (considering harmful element for the human body), the Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) BMGs have been newly developed with different short- or medium-range order in the structure. The compressive global strain of Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8) can be significantly improved from 4.5% for the In-free alloy to 10.2% for x = 4. However, a further increase of the indium content to 8 at.% results in a decrease of the plasticity. Among all the monolithic Ni-free Ti-based BMGs reported so far, the novel Ti40Zr10Cu32Pd14In4 BMG shows the largest plasticity. Inspired by the dislocation concept in crystalline materials, we propose a strategy for the design of ductile BMGs through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.
2

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 18 October 2012 (has links) (PDF)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
3

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 09 October 2012 (has links)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
4

Gemischte und einfache Parameteridentifikation mittels der Finiten-Elemente-Methode an Nanoindentationsmessungen

Lösch, Sören 25 January 2013 (has links) (PDF)
Die Anwendung des Verfahrens der inversen Parameteridentifikation auf die Nanoindentation mit einer neuen Materialklasse (amorphe Legierungen) ist Hauptgegenstand der vorliegenden Arbeit. Um die Methode auf ihre Zuverlässigkeit hin zu überprüfen, werden darüber hinaus die drei Härtevergleichsplatten HV240, HV400 und HV720 sowie das oxidische Glas BK7, deren Nanoindentationsmessungen von Dipl.-Ing. André Clausner schon zu einem früheren Zeitpunkt vorgenommen wurden, zur Berechnung herangezogen. Die Auswahl der Materialien erfolgte so, dass diese einen möglichst großen Bereich von Y abdecken, von BK7 bis hin zu HV240. Damit soll gezeigt werden, dass das Verfahren der inversen Parameteridentifikation für einen großen Bereich von natürlich vorkommenden Materialien genutzt werden kann. Der Schwerpunkt liegt dabei auf der Bestimmung des Fließverhaltens, das durch die Parameter Fließgrenze1 Y und Verfestigungsexponent n erfolgt. Ziel ist es, in Zukunft auf weitere Experimente, die bisher zur Bestimmung der mechanischen Materialeigenschaften genutzt wurden und häufig zur Zerstörung der Proben führten, verzichten zu können. Für viele Gläser, z.B. BK7, sind derartige zerstörende Versuche nicht anwendbar, weil spröde Materialien splittern statt plastisch zu fließen. Dieser Arbeit liegt die Methode der Finiten-Elemente zugrunde, um eine inverse Parameteridentifikation zu realisieren. Sie wird hier eingesetzt, weil es sich bei plastischer Verformung um einen nichtlinearen Prozess2 handelt, der analytisch nicht mehr geschlossen gelöst werden kann. Die Simulationssoftware ANSYS R und ein Optimierungsmodul (SPC-OPT) der Fakultät für Maschinenbau dienen zur Berechnung. Bei der Simulation werden dabei ein zweidimensionales Modell und ein realitätsnahes dreidimensionales Modell eingesetzt.
5

Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

Han, Junhee 20 May 2014 (has links) (PDF)
In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd35Ti35Co30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd–Ti–Co system revealed that the stable miscibility gap of binary Gd–Ti extends into the ternary Gd–Ti–Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be tailored both at microscopic and macroscopic length scales. This includes either droplet-like or interconnected microstructures at the microscopic level and glass-glass or glass-crystalline composites at the macroscopic level. Essential parameter for the quenched in microstructure is the temperature dependence of liquid-liquid phase separation, which is determined by the chemical composition of the alloy: on the one hand, earlier and/or later stages of spinodal decomposition or almost homogeneous glassy states are obtained if the critical temperature of miscibility gap Tc is close to the glass transition temperature Tg; and on the one hand, coarsening and secondary precipitations of the liquids are obtained if Tc is much higher than Tg. Finally, the influence of the microstructure developed by phase separation on their magnetic properties had been investigated. The saturation magnetization σS depends on the overall amount of Gd atoms in the alloys and is not remarkably affected by phase separation processes. The Curie temperature TCurie of the magnetic transition is influenced by the changed chemical composition of the Gd-rich glassy phases compared to that of monolithic Gd-Co-Al glasses. / In dieser Doktorarbeit wurde die flüssig-flüssig Phasenentmischung von Gd-basierten Legierungen hinsichtlich der Phasengleichgewichte, der Gefügeentwicklung während der Schmelzabschreckung und dazugehöriger magnetischer Eigenschaften, untersucht. Die Zustandsdiagramme der binären Untersysteme Gd-Zr undGd-Ti wurden experimentell ermittelt.. Insbesondere konnten die Phasengleichgewichte mit der flüssigen Phase mittels in-situ Röntgenbeugungsmessunngen an elektrostatisch levitierten Schmelzen direkt, bestimmt werden. Das Gd-Zr System stellt ein ein eutektisches Phasendiagram dar und besitzt eine metastabile Mischungslücke. Die eutektische Zusammensetzung wurde mit 18 ± 2 at.%Zr bestimmt und der Verlauf der Liquiduslinie bei erhöhten Temperaturen wurde experimentell ermittelt. Experimentell wurde die Koexistenz von kubisch-raumzentrierten Zr und Gd in einem Bereich bei hohen Temperaturen nachgewiesen. Das Gd-Ti-System ist von monotektischer Art. Die experimentellen Beobachtungen dieser Arbeit trugen wesentlich zur Verbesserung der Beschreibung der Phasendiagaramme Gd-Zr- und Gd-Ti-Phasenbei. Die Phasengleichgewichte des ternären Gd-Ti-Co-Systems wurde anhand zweier Legierungszusammensetzungen untersucht. Die Röntgenbeugungsdiffraktogramme der geschmolzenen Legiereung Gd35Ti35Co30 sind ein direkter Beleg für die Koexistenz zweier flüssiger Phasen, aufgrund der flüssig-flüssig Phasenentmischung. Die erste experimentelle und thermodynamische Auswertung des ternären Gd-Ti-Co-Systems zeigt, dass sich die stabile Mischungslücke des binären Gd-Ti-Systems ins ternäre Gd-Ti-Co-System bis zu ungefähr 30 at.% Co erstreckt. Es wurden neue Gd-TM-Co-Al (TM = Hf, Ti oder Zr)-basierte metallische Gläser, die separierte Phasen besitzen, hergestellt. Ihr Gefüge wurden hinsichtlich Zusammensetzung- und Abkühlratenabhängigkeit der Phasenentmischung charakterisiert. Aufgrund der großen positiven Mischungsenthalpie zwischen Gd auf der einen und Hf, Ti oder Zr auf der anderen Seite, weisen diese Legierungen eine flüssig-flüssig Phasenentmischung während der Abschreckung aus der Schmelze auf. Die Einflussgrößen, die die Gefügeentwicklung während der Phasenentmischung bestimmen, sind die thermodynamischen Eigenschaften der flüssigen Phase, die kinetische Parameter und die Abschreckbedingungen. Indem diese Parameter und Bedingungen kontrolliert werden, kann das Gefüge auf makro- sowie mikroskopischer Längenskala maßgeschneidert werden. Dies beinhaltet entweder tropfenförmige oder miteinander verbundene Gefüge auf einer mikroskopischen Skala und Glas-Glas oder Glas-Kristall Komposite auf einer makroskopischen Längenskala. Ein wesentlicher Parameter für das abgeschreckte Gefüge ist die Temperatur-Abhängigkeit der flüssig-flüssig Phasenentmischung, die durch die chemische Zusammensetzung der Legierung bestimmt wird. Frühere und/oder spätere Stadien der spinodalen Entmischung oder nahezu homogene amorphe Zustände können abhängig von dem Temperaturunterschied zwischen kritischer Temperatur der flüssig-flüssig Phasenentmischung und der Glasübergangstemperatur erhalten werden. Wenn die kritische Temperatur der Mischungslücke, Tc, viel höher ist als die des Glasübergangs, Tg, können makroskopische Vergröberungen der tropfenförmigen Verteilung der flüssigen Phase und sekundäre flüssige oder kristalline Ausscheidungen in den gebildeten amorphen Phasen erhalten werden. Durch die Phasenentmischung und die erhaltenen heterogenen Gefüge werden die magnetischen Eigenschaften beeinflusst.. Die Sättigungsmagnetisierung,σS, hängt von der gesamten Anzahl der Gd-Atome der Legierung ab und wird nicht bemerkenswert vom Phasenentmischungsprozess beeinflusst. Die Curie Temperatur TCurie wird im Vergleich zu monolithischen Gd-Co-Al Gläsern, und abhängig von der chemischen Zusammensetzung der Gd-reichen Phase, verändert.
6

Flash-Annealing of Cu-Zr-Al-based Bulk Metallic Glasses

Kosiba, Konrad 29 May 2017 (has links) (PDF)
(Bulk) metallic glasses ((B)MGs) are known to exhibit the highest yield strength of any metallic material (up to 5GPa), and show an elastic strain at ambient conditions, which is about ten times larger than that of crystalline materials. Despite these intriguing mechanical properties, BMGs are not used as structural materials in service, so far. The major obstacle is their inherent brittleness, which results from severe strain localization in so-called shear bands. MGs fail due to formation and propagation of shear bands. A very effective way to attenuate the brittle behaviour is to incorporate crystals into the glass. The resulting BMG composites exhibit high strength as well as plasticity. Cu-Zr-Al-based BMG composites are special to that effect, since they combine high strength, plasticity and work-hardening. They are comprised of the glass and shape-memory B2 CuZr crystals, which can undergo a deformation-induced martensitic transformation. The work-hardening originates from the martensitic transformation and overcompensates the work-softening of the glass. The extent of the plasticity of BMG composites depends on the volume fraction, size and particularly on the distribution of the B2 CuZr crystals. Nowadays, it is very difficult, if not impossible to prepare BMG composites with uniformly distributed crystals in a reproducible manner by melt-quenching, which is the standard preparation method. Flash-annealing of BMGs represents a new approach to overcome this deficiency in the preparation of BMG composites and is the topic of the current thesis. Cu46Zr46Al8 and Cu44Zr44Al8Hf2Co2 BMGs were flash-annealed and afterwards investigated in terms of phase formation, crystallization kinetics and mechanical properties. Flash-annealing is a process, which is characterized by the rapid heating of BMGs to predefined temperatures followed by instantaneous quenching. A temperature-controlled device was succesfully developed and built. The Cu-Zr-Al-based BMGs can be heated at rates ranging between 16 K/s and about 200 K/s to temperatues above their melting point. Rapid heating is followed by immediate quenching where cooling rates of the order of 1000 K/s are achieved. As a BMG is flash-annealed, it passes the glass-transition temperature, Tg, and transforms to a supercooled liquid. Further heating leads to its crystallization and the respective temperature, the crystallization temperature, Tx, divides the flash-annealing of BMGs into two regimes: (1) sub-Tx-annealing and (2) crystallization. The structure of the glass exhibits free volume enhanced regions (FERs) and quenched-in nuclei. Flash-annealing affects both heterogeneities and hence the structural state of the glass. FERs appear to be small nanoscale regions and they can serve as initiation sites for shear bands. Flash-annealing of Cu-Zr-Al-based BMGs to temperatures below Tg leads to structural relaxation, the annihilation of FERs and the BMG embrittles. In contrast, the BMG rejuvenates, when flash-annealed to temperatures of the supercooled liquid region (SLR). Rejuvenation is associated with the creation of FERs. Compared to the as-cast state, rejuvenated BMGs show an improved plasticity, due to a proliferation of shear bands, which are the carrier of plasticity in MGs. Flash-annealing enables to probe the influence of the free volume in bulk samples on their mechanical properties, which could not be studied, yet. In addition, B2 CuZr nanocrystals precipitate during the deformation of flash-annealed Cu44Zr44Al8Hf2Co2 BMGs. Deformation-induced nanocrystallization does not occur for the present as-cast BMGs. Flash-annealing appears to stimulate the growth of quenched-in nuclei, which are subcritical in size and can also dissolve, once the BMG is heated to temperatures in the SLR. Rejuvenation represents a disordering process, whereas the growth of quenched-in nuclei is associated with ordering. There is a competition between both processes during flash-annealing. The ordering seems to lead to a “B2-like” clustering of the medium range of Cu44Zr44Al8Hf2Co2 BMGs with increasing heating duration. So far, there does not exist another method to manipulate the MRO of BMGs. If Cu44Zr44Al8Hf2Co2 BMGs are flash-annealed to temperatures near Tx, most likely compressive resiudal stresses develop near the surface, which is cooled faster than the interior of the BMG specimen. They hinder the propagation of shear bands and increase the plasticity of flash-annealed BMGs in addition to rejuvenation and deformation-induced nanocrystallization. If BMGs are heated to temperatures above Tx, they start to crystallize. Depending on the exact temperature to which the BMG is flash-annealed and subsequently quenched, one can induce controlled partial crystallization. Consequently, BMG composites can be prepared. Both Cu-Zr-Al-based BMGs are flash-annealed at various heating rates to study the phase formation as a function of the heating rate. In addition, Tg and Tx are identified for each heating rate, so that a continuous heating transformation diagram is constructed for both glass-forming compositions. An increasing heating rate kinetically constrains the crystallization process, which changes from eutectic (Cu10Zr7 and CuZr2) to polymorphic (B2 CuZr). If the Cu-Zr-Al-based BMGs are heated above a critical heating rate, exclusively B2CuZr crystals precipitate, which are metastable at these temperatures. Thus, flash-annealing of Cu46Zr46Al8 and Cu44Zr44Al8Hf2Co2 BMGs followed by quenching enables the preparation of B2 CuZr BMG composites. The B2 precipitates are small, high in number and uniformly distributed when compared to conventional BMG composites prepared by melt-quenching. Such composite microstructures allow the direct observation of crystal sizes and numbers, so that crystallization kinetics of deeply supercooled liquids can be studied as they are flash-annealed. The nucleation kinetics of devitrified metallic glass significantly diverge from the steady-state and at high heating rates above 90 K/s transient nucleation effects become evident. This transient nucleation phenomenon is studied experimentally for the first time in the current thesis. Once supercritical nuclei are present, they begin to grow. The crystallization temperature, which depends on the heating rate, determines the crystal growth rate. At a later stage of crystallization a thermal front traverses the BMG specimen. In levitation experiments, this thermal front is taken as the solid-liquid interface and its velocity as the steady-state crystal growth rate. However, the thermal front observed during flash-annealing, propagates through the specimen about a magnitude faster than is known from solidification experiments of levitated supercooled liquids. As microstructural investigations show, crystals are present in the whole specimen, that means far ahead of the thermal front. Therefore, it does not represent the solid-liquid interface and results from the collective growth of crystals in confined volumes. This phenomenon originates from the high density of crystals and becomes evident during the heating of metallic glass. It could be only observed for the first time in the current thesis due to the high temporal resolution of the high-speed camera used. The heating rate and temperature to which the BMG is flash-annealed determine the nucleation rate and the time for growth, respectively. The size and number of B2 CuZr crystals can be deliberately varied. Thus mechanical properties of B2 CuZr BMG composites can be studied as a function of the volume fraction and average distance of B2 particles. Cu44Zr44Al8Hf2Co2 BMG specimens were flash-annealed at a lower and higher heating rate (35 K/s and 180 K/s) to different temperatures above Tx and subsequently subjected to uniaxial compression. BMG composites prepared at higher temperatures show a lower yield strength and larger plastic strain due to the higher crystalline volume fraction. They not only exhibit plasticity in uniaxial compression, but also ductility in tension as a preliminary experiment demonstrates. Furthermore, nanocrystals precipitate in the amorphous matrix of BMG composites during deformation. They grow deformation-induced from quenched-in nuclei, which are stimulated during flash-annealing. In essence, flash-annealing of BMGs is capable of giving insight into most fundamental scientific questions. It provides a deeper understanding of how annealing affects the structural state of metallic glasses. The number and size of structural heterogeneities can be adjusted to prepare BMGs with improved plasticity. Furthermore, crystallization kinetics of liquids can be studied as they are rapidly heated. Transient nucleation effects arise during rapid heating of BMGs and they cannot be described using the steady-state nucleation rate. Therefore, an effective nucleation rate was introduced. Besides, the flash-annealing process rises the application potential of BMGs. The microstructure of BMG composites comprised of uniformly distributed crystals and the glass, can be reliably tailored. Thus, flash-annealing constitutes a novel method to design the mechanical properties of BMG composites in a reproducible manner for the first time. BMG composites, which exhibit high strength, large plasticitiy and as in the case of B2 CuZr BMG composites as well work-hardening behaviour, can be prepared, so that the intrinsic brittleness of monolithic BMGs is effectively overcome.
7

Ni-free Ti-based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior

Zheng, Na 18 July 2013 (has links)
Metallic glasses are amorphous alloys that do not possess long-range structural order in contrast to crystalline alloys. Ni-free Ti-based bulk metallic glasses (BMGs) have potential for biomedical applications due to their attractive properties such as high strength, good corrosion resistance and excellent micro-formability, which cannot be obtained for conventional crystalline alloys. In this PhD thesis, Ni-free Ti-based BMGs, i.e. Ti40Zr10Cu34Pd14Sn2 and Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8), were prepared in the shape of rods by suction casting. Both alloy classes were systematically characterized in terms of glass forming ability, thermal stability, phase formation and mechanical properties. The largest diameter obtained in the fully glassy state for Ti40Zr10Cu34Pd14Sn2 alloy is 3 mm and for Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) alloys is 2 mm. Base alloy (Ti40Zr10Cu36Pd14) contains some crystalline phase(s) in the glassy matrix for a 2 mm diameter rod. The structural transformations of Ti40Zr10Cu34Pd14Sn2 BMG upon heating were thoroughly analyzed by utilizing different combination of methods. Firstly, we used differential scanning calorimetry (DSC), X-Ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate the first crystallization event. The main products of the first crystallization are possibly -(Ti, Zr) and Cu3Ti (orthorhombic) phases. Secondly, we employed in situ x-ray diffraction in transmission mode using synchrotron beam to deeply study the thermally-induced structural changes like relaxation, glass transition and crystallization. Since the first peak in the diffraction patterns reflects the structure of the glassy phase on the medium-range scale, the position, width and intensity of this peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width and intensity values show a nearly linear increase with increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and glass transition temperature Tg. The changes in the free volume, which was arrested during rapid quenching of the BMG, and the coefficient of volumetric thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals. For the Ti40Zr10Cu34Pd14Sn2 alloy, 2 mm diameter rods exhibit the best combination of mechanical properties (e.g. large plastic strain and high yield strength) among all the diameters (ø2, ø3 and ø4 mm) under the room-temperature compression tests. With the aim to improve its room-temperature mechanical properties, the processes of pre-annealing and cold rolling have been applied for the 2 mm diameter rods. Annealed and quenched specimens below Tg and in the supercooled liquid region (between Tg and onset crystallization temperature Tx) do not lead to the enhancement of the plasticity compared to as-cast alloys due to annihilation of excess free volume and crystallization. Cold rolling can effectively improve the plasticity of this BMG by inducing structural heterogeneities. Rolled samples up to a thickness reduction of 15% result in the largest plasticity of 5.7%. Low yield strength and visible work hardening ability are observed in the both 10%-rolled and 15%-rolled samples. The deformation behavior of Ti40Zr10Cu34Pd14Sn2 BMG at the elevated temperatures slightly below Tg and in the supercooled liquid region has been investigated. The stress-strain relations for this BMG over a broad range of temperatures (298 ~716 K) and strain rates (10-5 to 10-3 s-1) were established in uniaxial compression. Under compression tests at the highest test temperature of 716 K, the Ti-based BMG partially crystallizes and low strain rates can lead to the formation of larger volume fractions of crystals. In order to further improve the plasticity of Ti-Zr-Cu-Pd BMGs and simultaneously reduce the content of Cu (considering harmful element for the human body), the Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) BMGs have been newly developed with different short- or medium-range order in the structure. The compressive global strain of Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8) can be significantly improved from 4.5% for the In-free alloy to 10.2% for x = 4. However, a further increase of the indium content to 8 at.% results in a decrease of the plasticity. Among all the monolithic Ni-free Ti-based BMGs reported so far, the novel Ti40Zr10Cu32Pd14In4 BMG shows the largest plasticity. Inspired by the dislocation concept in crystalline materials, we propose a strategy for the design of ductile BMGs through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.
8

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 24 February 2014 (has links) (PDF)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
9

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 10 February 2014 (has links)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
10

Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

Han, Junhee 14 April 2014 (has links)
In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd35Ti35Co30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd–Ti–Co system revealed that the stable miscibility gap of binary Gd–Ti extends into the ternary Gd–Ti–Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be tailored both at microscopic and macroscopic length scales. This includes either droplet-like or interconnected microstructures at the microscopic level and glass-glass or glass-crystalline composites at the macroscopic level. Essential parameter for the quenched in microstructure is the temperature dependence of liquid-liquid phase separation, which is determined by the chemical composition of the alloy: on the one hand, earlier and/or later stages of spinodal decomposition or almost homogeneous glassy states are obtained if the critical temperature of miscibility gap Tc is close to the glass transition temperature Tg; and on the one hand, coarsening and secondary precipitations of the liquids are obtained if Tc is much higher than Tg. Finally, the influence of the microstructure developed by phase separation on their magnetic properties had been investigated. The saturation magnetization σS depends on the overall amount of Gd atoms in the alloys and is not remarkably affected by phase separation processes. The Curie temperature TCurie of the magnetic transition is influenced by the changed chemical composition of the Gd-rich glassy phases compared to that of monolithic Gd-Co-Al glasses. / In dieser Doktorarbeit wurde die flüssig-flüssig Phasenentmischung von Gd-basierten Legierungen hinsichtlich der Phasengleichgewichte, der Gefügeentwicklung während der Schmelzabschreckung und dazugehöriger magnetischer Eigenschaften, untersucht. Die Zustandsdiagramme der binären Untersysteme Gd-Zr undGd-Ti wurden experimentell ermittelt.. Insbesondere konnten die Phasengleichgewichte mit der flüssigen Phase mittels in-situ Röntgenbeugungsmessunngen an elektrostatisch levitierten Schmelzen direkt, bestimmt werden. Das Gd-Zr System stellt ein ein eutektisches Phasendiagram dar und besitzt eine metastabile Mischungslücke. Die eutektische Zusammensetzung wurde mit 18 ± 2 at.%Zr bestimmt und der Verlauf der Liquiduslinie bei erhöhten Temperaturen wurde experimentell ermittelt. Experimentell wurde die Koexistenz von kubisch-raumzentrierten Zr und Gd in einem Bereich bei hohen Temperaturen nachgewiesen. Das Gd-Ti-System ist von monotektischer Art. Die experimentellen Beobachtungen dieser Arbeit trugen wesentlich zur Verbesserung der Beschreibung der Phasendiagaramme Gd-Zr- und Gd-Ti-Phasenbei. Die Phasengleichgewichte des ternären Gd-Ti-Co-Systems wurde anhand zweier Legierungszusammensetzungen untersucht. Die Röntgenbeugungsdiffraktogramme der geschmolzenen Legiereung Gd35Ti35Co30 sind ein direkter Beleg für die Koexistenz zweier flüssiger Phasen, aufgrund der flüssig-flüssig Phasenentmischung. Die erste experimentelle und thermodynamische Auswertung des ternären Gd-Ti-Co-Systems zeigt, dass sich die stabile Mischungslücke des binären Gd-Ti-Systems ins ternäre Gd-Ti-Co-System bis zu ungefähr 30 at.% Co erstreckt. Es wurden neue Gd-TM-Co-Al (TM = Hf, Ti oder Zr)-basierte metallische Gläser, die separierte Phasen besitzen, hergestellt. Ihr Gefüge wurden hinsichtlich Zusammensetzung- und Abkühlratenabhängigkeit der Phasenentmischung charakterisiert. Aufgrund der großen positiven Mischungsenthalpie zwischen Gd auf der einen und Hf, Ti oder Zr auf der anderen Seite, weisen diese Legierungen eine flüssig-flüssig Phasenentmischung während der Abschreckung aus der Schmelze auf. Die Einflussgrößen, die die Gefügeentwicklung während der Phasenentmischung bestimmen, sind die thermodynamischen Eigenschaften der flüssigen Phase, die kinetische Parameter und die Abschreckbedingungen. Indem diese Parameter und Bedingungen kontrolliert werden, kann das Gefüge auf makro- sowie mikroskopischer Längenskala maßgeschneidert werden. Dies beinhaltet entweder tropfenförmige oder miteinander verbundene Gefüge auf einer mikroskopischen Skala und Glas-Glas oder Glas-Kristall Komposite auf einer makroskopischen Längenskala. Ein wesentlicher Parameter für das abgeschreckte Gefüge ist die Temperatur-Abhängigkeit der flüssig-flüssig Phasenentmischung, die durch die chemische Zusammensetzung der Legierung bestimmt wird. Frühere und/oder spätere Stadien der spinodalen Entmischung oder nahezu homogene amorphe Zustände können abhängig von dem Temperaturunterschied zwischen kritischer Temperatur der flüssig-flüssig Phasenentmischung und der Glasübergangstemperatur erhalten werden. Wenn die kritische Temperatur der Mischungslücke, Tc, viel höher ist als die des Glasübergangs, Tg, können makroskopische Vergröberungen der tropfenförmigen Verteilung der flüssigen Phase und sekundäre flüssige oder kristalline Ausscheidungen in den gebildeten amorphen Phasen erhalten werden. Durch die Phasenentmischung und die erhaltenen heterogenen Gefüge werden die magnetischen Eigenschaften beeinflusst.. Die Sättigungsmagnetisierung,σS, hängt von der gesamten Anzahl der Gd-Atome der Legierung ab und wird nicht bemerkenswert vom Phasenentmischungsprozess beeinflusst. Die Curie Temperatur TCurie wird im Vergleich zu monolithischen Gd-Co-Al Gläsern, und abhängig von der chemischen Zusammensetzung der Gd-reichen Phase, verändert.

Page generated in 0.0765 seconds