• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation of Inclusions and their Development during Secondary Steelmaking

Thunman, Mikael January 2009 (has links)
Al–O relations in iron were investigated. Pure iron with varying Al content was equilibrated at 1873 K. The oxygen content of iron with higher Al content than 1.0 mass % was found to be much lower than previous works, while the oxygen content for Al content less than 1 mass% was found to be slightly higher. Further, a classification procedure of inclusions was developed using the commercial software INCA Feature. Three classes were made, spinel, TP-(CaO-Al2O3), and (CaO-Al2O3) class, corresponding to the inclusions found during degassing at Uddeholm Tooling. The results showed that the spinel phase disappeared after degassing along with a reduction in numbers for the two phase inclusion (TP-(CaO-Al2O3)). Pure calcium aluminates however showed an increasing trend in a majority of the heats. The chemical development of inclusions at OVAKO Steel in Hofors, Sweden was also established. According to the morphologies and compositions, the inclusions were classified into 5 different types, namely, (1) alumina inclusions, (2) calcium aluminate, (3) spinel+calcium aluminate, (4) calcium aluminate surrounded by a CaS shell, and (5) spinel+calcium aluminate surrounded by a CaS shell. Thereafter refractory lining samples with attached slag layer were taken from used ladles at the two steel plants. The morphologies of the slag layers and the phases present were examined. The precipitated phases found in the refractory were 3CaO.Al2O3, MgO.Al2O3 and CaO in the case of Ovako Steel and 3CaO.Al2O3 and 2CaO.SiO2 in the case of Uddeholm Tooling. To help the understanding, model calculations using THERMOCALC were carried out. The model predictions differed somewhat from the experimental observation, the predicted major phases were in line with the EDS analysis on the refractory samples. Finally experiments were carried out to study the slag entrainment related to the open-eye during ladle treatment. Ga-In-Sn alloy was used to simulate the liquid steel, while MgCl2-Glycerol(87%) solution was used to simulate the ladle slag. No noticeable amount of top liquid was observed in any of the samples taken from the metal bulk during gas stirring. To confirm this aspect, slag-metal interface samples were taken from an industrial gas stirred steel ladle. No entrapment was found in the steel. The accordance of the laboratory and industrial results suggests that the entrainment of slag into the steel bulk around the open-eye cannot be considered as the major contribution to inclusion formation. / QC 20100812
2

Surface and Inner Deformation during Shape Rolling of High Speed Steels

Nordén, Kristina January 2007 (has links)
<p>Shape rolling is a common manufacturing process used to produce long products i.e. bars and wire. One of the problems that might occur during rolling is defect formation leading to rejection of the finished product. This work is a step towards a better understanding of the evolution of some of these defects. </p><p>The evolution and reduction of cracks during shape rolling is studied in this thesis. To accomplish this, artificial longitudinal cracks are machined along bars of high speed steel. The cracks are positioned at different sites evenly distributed along the periphery in intervals of 45°. Some of the cracks are left open and some are filled with carbon or stainless steel welds. FE simulations are performed using the commercial code MSC.Marc and the results from the simulations are compared with experimental ones. Generally, simulations predict less reduction than observed experimentally. For most positions, the cracks tend to reduce most effectively followed by carbon steel welds and stainless steel welds. </p><p>To evaluate the inner deformation of a cross section during shape rolling in an oval-round-oval-round series, sample bars of M2 high speed steel are prepared with grids made up by stainless steel wires. After collecting samples after each pass, they are X-rayed to create an image of the grid. The deformation of the wires can favorably be described by FE simulations of a bar originally rotated 10° when entering the first pass. The results suggest that the simulations describe the deformation during shape rolling well. </p>
3

The Atmospheric Corrosion of Magnesium Alloys : Influence of Microstructure and Environments

Jönsson, Martin January 2007 (has links)
The low density and high specific strength of magnesium alloys have created a great deal of interest in the use of these alloys in the automotive and aerospace industries and in portable electronics. All of these industries deal with applications in which weight is extremely important. However, an obstacle to overcome when using magnesium alloys in engineering applications are their unsatisfactory corrosion properties. This thesis is devoted to the atmospheric corrosion of the two magnesium alloys AZ91D and AM50, in particular the ways the microstructure and exposure parameters of these alloys influence their corrosion behaviour. The work includes both laboratory and field studies. The results obtained show that the microstructure is of vital importance for the corrosion behaviour under atmospheric conditions. The microstructure of magnesium-aluminium alloys contains different intermetallic phases, e.g. Al8Mn5 and β-Mg17Al12. The local nobility of these intermetallic phases was measured on a submicron level in an atmospheric environment. It was shown that particles of the Al-Mn type exhibit the highest Volta potential among the microstructure constituents of the AZ91D magnesium alloy. Further, it was shown that the Volta potential was highly dependent on the aluminium content of the magnesiumaluminium phases in the surface layer. When thin electrolyte layers are present, CO2 diffuses readily to the surface forming magnesium carbonate, hydromagnesite. The CO2 lowers the pH in areas on the surface that are alkaline due to the cathodic reaction. This stabilises the aluminium-containing surface film, the result being increased corrosion protection of phases rich in aluminium. Both in the laboratory and under field conditions the corrosion attack was initiated in large α-phase grains, which is explained by the lower aluminium content in these grains. The thin electrolyte film, which is formed under atmospheric conditions, decreases the possibility of galvanic coupling of alloy constituents located at larger distances from each other. Thus the cathodic process is in most cases located in the eutectic α-/β phase close to the α-phases, instead of in intermetallic Al-Mn particles, even though the driving force for the initiation of the corrosion attack in Al-Mn particles should be high, due to their high nobility. / <p>QC 20100802</p>
4

On Peritectic Reactions and Transformations and Hot Forming of Cast Structures

Nassar, Hani January 2009 (has links)
This thesis deals with peritectic reactions and transformations that occur during the solidification of many alloys. Peritectics are believed to be a major cause of crack-formation in many steels, thus, good knowledge of the mechanisms by which these phenomena occur is essential for preventing such defects. The thesis also handles the behaviour of metals, in particular cast structures, during hot forming. Grain size and microstructure are of most importance in determining the strength, toughness and performance of a steel. For achieving enhanced mechanical and microstructural properties, good understanding of the phenomena occurring during hot forming is required. Peritectic reactions and transformations were studied in Fe-base and steel alloys through differential thermal analysis (DTA) experiments and micrographic investigation of quenched DTA samples. The effect of the ferrite/austenite interface strain during the peritectic reaction on equilibrium conditions was thermodynamically analysed, and the results were related to temperature observations from DTA experiments conducted on Fe-base alloys and low-alloy steels. Massive transformations from ferrite to austenite were observed in the micrographs of a number of quenched low-alloy steel samples and it was proposed that these transformations are uncontrolled by diffusion, and occur in the solid state as a visco-plastic stress relief process. DTA study of an austenitic stainless steel indicated that the alloy can exhibit primary precipitations to either ferrite or austenite. A continuously-cast breakout shell of the steel was analyzed and it was suggested that the observed irregularities in growth were due to alternating precipitations of ferrite and austenite; parts of the shell with higher ratios of primary-precipitated ferrite shrink in volume at the peritectic temperature and experience reduced growths. An experimental method for studying the behaviour of metals during hot forming developed, and hot compression tests were conducted on cast copper and ball-bearing steel samples. Flow stress curves were obtained at varying temperatures and strain rates, and the results showed good agreement with earlier observations reported in literature. Micrographic analysis of quenched samples revealed variations in grain size and a model was fitted to describe the grain size as a function of deformation temperature and strain. Solidification growth during continuous casting of stainless steel and copper was numerically modelled. A varying heat transfer coefficient was proposed to approximate the experimentally measured growth irregularities in the continuously-cast stainless steel breakout shell. Solidification growth of pure copper was also modelled in the Southwire continuous casting process. Temperature measurements from the chill mould were used to approximate the temperature gradient and the heat extraction from the solidifying strand, and the results were used in a two-dimensional model of solidification. / QC 20100803

Page generated in 0.1043 seconds