• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 26
  • 12
  • 10
  • 10
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Limpopo Complex of Southern Africa: outstanding issues with emphasis on ultrahigh-temperature-high-pressure metamorphism and granitoid magmatism

07 June 2012 (has links)
Ph.D. / Preserved Archean crust dominantly recording lower temperature conditions (greenschist to amphibolites facies), the earliest widespread record of ultrahigh- temperature metamorphism occur in the Neoarchean. Considering that, collisional tectonic setting has been postulated as a possible tectonic scenario for the generation of ultrahigh-temperature metamorphism, sites where Archean cratons underwent collision can be potential sites for preservation of ultrahigh-temperature metamorphic granulites. The Limpopo Complex is a high-grade metamorphic terrain considered to have formed by collision in Neoarchean time between the Archean Kaapvaal and Zimbabwe cratons.Detailed petrographic and mineral chemical characterization of representative high Mg-Al granulites from the Southern Marginal Zone, Central Zone and the Northern Marginal Zone – forming the three subzones of the Limpopo Complex – was carried out. Evidence for the preservation of mineral assemblages considered diagnostic of ultrahigh- temperature metamorphic conditions, such as orthopyroxene+sillimanite±quartz, high-Al/(MgTs) orthopyroxene, sapphirine+quartz, spinel+quartz, corundum+quartz and antiperthite, are shown from these high Mg-Al granulites. Most of these mineral assemblages are reported for the first time from the Limpopo Complex. In addition, two unique textures are also reported – one, the discovery of corundum lamellar intergrowth with orthopyroxene from a high Mg-Al granulite from the Southern Marginal Zone, and second, the rare occurrence of sapphirine+quartz post dating orthopyroxene+sillimanite±quartz from two Mg-Al granulites from the Central Zone. Pressure-temperature calculations including representative P-T phase diagrams computed for the bulk compositions of the granulites studied clearly indicate ultrahigh- temperature conditions for all the three subzones. In contrast to two previous studies, one each for the Southern Marginal Zone (~950°C) and the Central Zone (~930°C), this study presents higher temperature estimates of ~1050 to ~1100°C for the three subzones. Together with examples of ultrahigh-temperature metamorphic conditions reported by the two previous studies, this study shows that the ultrahigh-temperature event reported here has affected the length and breadth of the three subzones of the Limpopo Complex. Further, the high-pressure conditions inferred from the early composition of orthopyroxene from the unique orthopyroxene-corundum intergrowth and the P-T phase diagrams computed for representative granulites from the three zones suggest a common high pressure event in all the three sub zones of the Limpopo Complex.
22

An integrated petrofabric study of the high-pressure Orlica-Śnieźnik Complex, Czech Republic and Poland

Pressler, Rebecca E. January 2006 (has links)
Thesis (M.S.)--Ohio University, June, 2006. / Title from PDF t.p. Includes bibliographical references (p. 42-46)
23

Archaeometrical Study On Marble Forgery

Songul, Gunes 01 July 2012 (has links) (PDF)
This thesis focuses on the detection of marble sculpture forgery made of cultured marble. Cultured marble is a mixture of marble dust, polyester and accelerators. Thus chemical analysis of cultured marble would give declined levels of calcium when compared to authentic sculptures. Since sample removal is a problem when dealing with archaeological heritage, the instrument used was portable X-Ray Fluorescence device which provides in situ analysis of the samples. Device has been used to analyze six authentic and four forgery sculptures. Seven of the sculptures were provided by Anatolian Civilizations Museum and three of them were provided by a sculpture workshop, Ak
24

Exhumation of the western Cyclades a thermochronometric investigation of Serifos, Aegean region (Greece) /

Vogel, Heidi A. January 2009 (has links)
Thesis (M.S.)--Ohio University, August, 2009. / Title from PDF t.p. Includes bibliographical references.
25

Birrimian metamorphic and associated granitic rocks (Precambrian), south-central Ghana, West Africa

Fakundiny, Robert H. 27 June 2011 (has links)
The Birrimian System forms most of the exposed Precambrian shield of West Africa. About half of Ghana is underlain by Birrimian metamorphic and granitic rocks. In the Dunkwa S. E. area (Field Sheet 48) of south-central Ghana, interlayered sedimentary and volcanic rocks were metamorphosed to greenschist and amphibolite facies. These sheared and tightly folded metamorphic rocks have incipient retrograde metamorphism of biotite and garnet to chlorite or hornblende to biotite. Two large intrusive bodies in the metamorphic terrain may be partly the result of granitization: (1) the Pra River complex, an albitized laccolith or sill, consisting of quartz monzonite, quartz diorite, and granodiorite; (2) the Twifu Praso complex of albite granite and granodiorite gneiss. All of the above rocks were folded along northeast-trending fold axes. Then a third granitic body, the Wuwu River albitized quartz monzonite, intruded and locally re-folded the older rocks. / text
26

The structure and metamorphic evolution of the High Himalayan Slab in SE Zanskar and NW Lahaul

Walker, James David January 1998 (has links)
This thesis attempts to unravel the complex thermal and structural history of part of the High Himalayan Slab in NW India and combines reconnaissance-style field structural mapping of an area covering ~10,000 km<sup>2</sup> with petrography, microstructural analysis, thermobarometry and geochronology techniques. The results of this work show that the oldest protoliths of the High Himalayan Slab are at least Cambrian in age and that they may have experienced a major pre-Himalayan metamorphism at c.500 Ma. The youngest protoliths are Mesozoic in age (the Tandi Group) and demonstrate that the High Himalayan Slab represents the metamorphosed equivalents of the Tibetan Sedimentary Series. Metamorphism was achieved via substantial crustal shortening and thickening following the India-Asia collision at 50-54 Ma ago. Phase relationships demonstrate that metamorphism was a regional Barrovian-type event associated with the growth of biotite-, garnet-, staurolite-, kyanite- and sillimanite-bearing assemblages in metapelites. Quantitative thermobarometry demonstrates that near-peak conditions of c.6-8 kbar and 550-650°C were attained in the deepest exposed levels. Growth of metamorphic assemblages was underway by at least 30 Ma, as indicated by U-Pb ages of metamorphic monazites. Exhumation of the High Himalayan Slab was achieved through a combination of extensional unroofing along major detachments (namely the Zanskar Shear Zone), thermal doming, thrusting along the Main Central Thrust and surface erosion. Exhumation is closely associated with the growth of sillimanite- and cordierite-bearing assemblages in pelites and the generation and emplacement of crustal melt leucogranites in the upper parts of the slab. U-Pb dating of accessory phases from one of the crustal melt leucogranites (the Gumburanjon leucogranite) constrains its crystallisation and emplacement age at c.21-22 Ma. This is only slightly older than its <sup>40</sup>Ar/<sup>39</sup>Ar muscovite and biotite cooling ages of c.20-21 Ma, which is attributed to the emplacement of the Gumburanjon leucogranite into the immediate footwall of the ZSZ. Field and geochronological data therefore support a strong temporal and spatial relationship between upper crustal melting and extension in a convergent orogen.
27

The development of an in-situ UV ablation GC-IRMS technique for the analysis of oxygen isotopes in metamorphic minerals, and its application to polymetamorphic schists from Western Massachusetts, U.S.A

Gardiner, Nicholas John January 2000 (has links)
This thesis describes an attempt to develop a pioneering method for the analysis of oxygen isotopes in metamorphic rocks. This technique is then applied to a suite of metapelites from Massachusetts, U.S.A. with the aim of investigating metamorphic history. The study of oxygen isotopes is a rapid and efficient way of deciphering the reaction history of a metamorphic rock, and they are particularly useful for quantifying the role of fluids during metamorphism. Technological advances have given the opportunity to develop a new laser fluorination facility capable of in-situ oxygen isotope analysis on the 100μm scale. The use of UV laser ablation coupled with helium carrier flow and isotope ratio mass spectrometry gives the potential for liberation, transfer and analysis of nanomoles of oxygen. This analytical technique is developed herein, and applied to garnets from high alumina metapelites of the Hoosac Schist of Western Massachusetts. These large garnets contain concentric unconformity textures which are attributed to at least two metamorphic events. Core-rim zoning profiles from three Hoosac garnets has been accomplished. Metamorphic modelling in the complex chemical system Na<sub>2</sub>O-CaO-MnO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>- SiO<sub>2</sub>-H<sub>2</sub>O has yielded P-T estimates for garnet cores of 520°C and 8.5 kbar, and rims at 590°C and 8-10kbar. Within this framework, a new approach enables calculation of oxygen isotope shifts with reaction progress in the presence of a non-equilibrium fluid. Fitted profiles from the Hoosac garnets imply prograde core growth during inflow of external low-δ<sup>18</sup>O fluid, and calculations suggest a minimum time integrated fluid flux for the first garnet growth event of the order of 0.2 cm<sup>3</sup>/cm<sup>2</sup>, some four to five orders of magnitude less than other New England studies.
28

Oxygen and Hydrogen Isotope Studies of Metamorphic Rocks in the Wawa-Kapuskasing Crustal Transect, Ontario, Canada

Li, Hong 02 1900 (has links)
<p> Oxygen and hydrogen isotopic distributions have been studied for rocks from a 100 km transect in the central Superior Province of Ontario, Canada. The transect represents progressively deeper terrains of the Michipicoten Greenstone Belt (MGB), the Wawa Gneiss Terrane (WGT), and the Kapuskasing Structural Zone (KSZ), which correspond to an increase of metamorphic grade and are interpreted as an oblique section through approximately 20 km of crustal thickness. The rocks in the terrains range in age from ~2.76 to ~2.60 Ga, with fewer later intrusions.</p> <p> Equivalent lithologic types have similar δ18O range at middle and lower crustal levels (WGT and KSZ). Tonalitic to granodioritic rocks range from 6.4%o to 9.5o/oo; Dioritic and anorthositic rocks range from 5.5o/oo to 7.6o/oo; a majority of the mafic gneisses (group 1) range from 5.7o/oo to 7.1o/oo, while group 2 mafic gneisses range from 8. 1o/oo to 9.5o/oo. δ18O values of the rocks exhibit a remarkable correlation with SiO2 values, similar to that observed in unaltered plutonic rocks of equivalent composition. Paragneisses have significantly higher δ18O values, 9.3o/oo to 12.2o/oo. Low-grade metavolcanic and metasedimentary rocks of the MGB are 18O-enriched compared to their high-grade equivalents in the KSZ and WGT, 7.4o/oo to 13.3o/oo for mafic to felsic metavolcanic rocks and 11.4o/oo to 14.7o/oo for clastic metasediments.</p> <p> Coexisting minerals from high-grade rocks exhibit 18O-fractionation closely consistent with isotopic equilibrium, suggesting that the isotopic system has not been grossly disturbed. Isotopic thermometers give uniform apparent temperatures, about 553°C to 584°C, across the entire transect, which are lower than the inferred metamorphic temperatures in the highest-grade (KSZ) terrane.</p> <p> The lack of distinctive isotopic differences between equivalent rock types in the KSZ and WGT suggests that there is no significant gradient in δ18O with depth in the crust or with metamorphic grade. The majority of mafic gneisses (Group 1) have δ18O values similar to fresh basalts and appear to have been emplaced either as subaerial extrusives, intrusive sills, or, less likely, as submarine extrusives that were hydrothermally altered at high temperatures. The less abundant Group 2 mafic gneisses have δ18O values typical of greenstones that were altered at low temperature by sea-water, and isotopically resemble low-grade rocks in the Michipicoten and Abitibi belts. In general, no major changes in whole-rock isotopic composition appear to have occurred during granulite facies metamorphism, implying limited flux of water or CO2.</p> <p> The continuous linear gradient in δ18O vs SiO2 in the high-grade rocks cannot be due to differentiation of a mafic source magma. A model involving an association between mantle-derived mafic magma and 18O-enriched crustal materials is more consistent with the oxygen isotopic data.</p> <p> Hydrogen isotope composition of hornblende and biotite has been analyzed from selected rocks. Mafic and anorthositic rocks from the KSZ have δD values from -58 to -62o/oo, suggesting a possible mantle-derived origin of fluid in the system. Two mafic gneisses, which are 18O-enriched, show lower δD values, -89 and -101o/oo. The depletion of deuterium is consistent with the model of low temperature alteration with seawater in a submarine environment. Mafic and tonalitic gneisses from the WGT are also depleted in deuterium, -87 to -109o/oo. Since these rocks intruded into relatively higher level of the crust and commonly contain secondary alteration minerals, it is possible that hydrothermal alteration took place at late- or post-metamorphism stage, and the source of the fluid is likely meteoritic water, The amount of water involved in the exchange was restricted, and was not enough to disturb the oxygen isotopic system in the rocks.</p> / Thesis / Master of Science (MSc)
29

Geologic and petrologic evidence for granulite facies partial melting in the Garies-Platbakkies supracrustal gneiss belt, Namaqualand metamorphic complex, South Africa / Geologic and petrologic evidence for granulite facies partial melting in the Garies-Platbakkies supracrustal gneiss belt, Namaqualand metamorphic complex, South Africa

Baars, Franciscus Jacobus, Baars, Franciscus Jacobus 22 November 2016 (has links)
The Namaqua Province of southwestern Africa is comprised of a number of distinct tectonostratigraphic subprovinces and terranes, which have in common a 1100-1200Ma structural and metamorphic imprint. In the western Bushmanland Subprovince, E-Wtrending belts of supracrustal gneisses are intruded by and infolded with granitic gneisses of varying ages. A central zone of rocks metamorphosed in the granulite facies is bordered to the north and south by amphibolite facies rocks. A portion of the Garies-Platbakkies supracrustal gneiss belt has been mapped on a 1:15 000 scale. The supracrustal succession was deposited on an unconfirmed basement. It is structurally juxtaposed and infolded with three different granitic augen gneisses. Large bodies of orthopyroxene-bearing granite are syntectonically emplaced in the succession. A wide variety of anatectic granites crop out as sills, dykes and pods varying in size between a few metres and a few hundred metres. These bodies commonly truncate pre-existing foliations. The metamorphosed supracrustal succession contains gneissic equivalents of felsic, mafic and intermediate volanics; pelitic, semi-pelitic, magnesian and granitic composition sediments; feldspathic quartzites; and subordinate quartzites, banded iron formation and calc-silicates. The mineral assemblages of all the rocks indicate metamorphism in the granulite facies. A variety of field evidence exists which suggests that the metamorphic peak was responsible for generating significant quantities of partial melt. The rocks of the study area contain an early Dl fabric. This is refolded in tight, E-plunging D2 crenulation folds. D2 mineral fabrics pre-date the metamorphic peak. D3 open, asymmetric folds are N-vergent and fold the crystalline products partial melting. The southern limbs of D3-folds are attenuated in 04 shear zones. The whole belt is cut by steep, N-S-trending faults. A wide variety of thermobarometers are tested for their applicability to mineral assemblages in the supracrustal rocks. The results of this application suggest that the metamorphic peak occurred at 780 ± 30°C and 5.0 ± 0.4 kbar. Assemblages in shear zones indicate an isobaric retrograde cooling path. The phase relations of melting near the solidus are reviewed with reference to common assemblages in the leucosomes of rocks with granitic and peraluminous bulk compositions. Isobaric T-a(H₂O) sections are constructed from available experimental and thermochemical data. Biotite dehydration and dehydration melting reactions are balanced using natural mineral compositions. The predicted results are compared with the modal abundances of natural product assemblages. The results suggest that dehydration melting was responsible for migmatization, and the consequent reduction of water activity. The amount of melt produced was controlled by the amount of water available from the dehydration of biotite. There is no evidence for the control of water activity by an external fluid reservoir. Limited amounts of water-undersaturated melts were extracted from their sites of generation. This process was responsible for the depletion of some leucosome assemblages with respect to K₂O, H₂O and in peraluminous rocks Na₂O. The partial melts were emplaced locally in developing shear zones.
30

Metamorphic studies in the Scottish Highlands

Baker, Andrew James January 1985 (has links)
Conditions of 8kb and 800°C are estimated for sillimanite K feldspar bearing metapelites and garnet-clinopyroxene bearing amnphibolites in Glen Muick. These conditions are inconsistent with the simultaneous nearby presence of equilibrium between andalusite and kyanite. Andalusite in the Glen Muick area is late. The sillimanite zone may have been in part primary. There is a transition without major structural break between Tay Nappe flat belt and the "Banff Nappe". A dataset has been derived for phases in the system KCMASHCO<sub>2</sub>. The MHSRK equation of Kerrick and Jacobs (1981) has been used to extract data from mixed devolatilisation equilibria. Heats of formation are in agreement with calorimetrically determined values. Phlogopite equilibria calculated using disordered phlogopite data seem most appropriate to natural metapelite assemblages. Variations in pressure and temperature have been constrained across the Dalradian using various calibrated reactions. Temperatures vary from about 500°C in the low kyanite zone to 800°C in the sillimanite-K feldspar zone and pressures vary from 4kb to 10kb. Pressure estimates are justified on the basis that they are consistent with the aluminosilicate phase diagram. Rocks from the Central Highlands to Glen Clova underwent a decrease in pressure during evolution through peak metamorphic conditions. Amphibolites from the southern Moines show evidence of a former eclogitic assemblage of early Grampian age or earlier. High temperature regional metamorphic rocks lie at high structural levels and are are suggested to be an allochthonous unit, the Banff Nappe of Grampian age. The western margin of the Banff Nappe is marked by a temperature maximum to the immediate east, sharp thermal transitions, a train of metabasites and a high strain zone. It is suggested that emplacement of a Banff Nappe resulted in the deformation and metamorphism of structurally lower rocks.

Page generated in 0.0489 seconds