• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insight into the Reactivity of Metastasis Inhibitor, Imidazolium trans-[tetrachloro (dimethyl sulfoxide)(imidazole)ruthenate(III)], with Biologically-active Thiols

Adigun, Risikat Ajibola 01 January 2012 (has links)
Imidazolium trans-[tetrachloro (dimethyl sulfoxide)(imidazole)ruthenate(III)], NAMI-A, is an experimental metastasis inhibitor whose specific mechanism of activation and action remains to be elucidated. In the nucleophilic and reducing physiological environment; it is anticipated that the most relevant and available reductants upon introduction of NAMI-A as a therapeutic agent will be the biologically-relevant free thiols. The kinetics and mechanisms of interaction of NAMI-A with biologically-active thiols cysteamine, glutathione, cysteine and a popular chemoprotectant, 2-mercaptoethane sulfonate (MESNA) have been studied spectrophotometrically under physiologically-relevant conditions. The reactions are characterized by initial reduction of NAMI-A with simultaneous formation of dimeric thiol and subsequent ligand exchange with water to various degrees as evidenced by Electospray Ionization Mass Spectrometry. Stoichiometry of reactions shows that one molecule of NAMI-A reacted with one mole of thiol to form corresponding disulfide cystamine, dimeric MESNA, oxidized glutathione and cystine. Observed rate constants, ko, for the reaction of NAMI-A with cysteamine, MESNA, GSH and cysteine were deduced to be 6.85 + 0.3 x 10-1, 9.4 + 0.5 x 10-2 , 7.42 + 0.4 x 10-3 and 3.63 + 0.3 x 10-2 s-1 respectively. Activation parameters determined from Arrhenius plots are indicative of formation of associative intermediates prior to formation of products. A negative correlation was obtained from the Brønsted plot derived from observed rate constants and the pKa of the different thiols demonstrating significant contribution of thiolate species towards the rate. In conclusion, interactions of NAMI-A with biologically-active thiols are kinetically and thermodynamically favored and should play significant roles in in vivo metabolism of NAMI-A.
2

EXPLORATION OF THE SRX-PRX AXIS AS A SMALL-MOLECULE TARGET

Mishra, Murli 01 January 2016 (has links)
Lung cancer is a leading cause of cancer-related mortality irrespective of gender. The Sulfiredoxin (Srx) and Peroxiredoxin (Prx) are a group of thiol-based antioxidant proteins that plays an essential role in non-small cell lung cancer. Understanding the molecular characteristics of the Srx-Prx interaction may help design the strategies for future development of therapeutic tools. Based on existing literature and preliminary data from our lab, we hypothesized that the Srx plays a critical role in lung carcinogenesis and targeting the Srx-Prx axis or Srx alone may facilitate future development of targeted therapeutics for prevention and treatment of lung cancer. First, we demonstrated the oncogenic role of Srx in urethane-induced lung carcinogenesis in genetically modified FVB mice. The Srx-null mice showed resistance to urethane-induced lung cancer. Second, we demonstrated the Srx and Prx sites important for Srx-Prx interaction. The orientation of this arm is demonstrated to cause some steric hindrance for the Srx-Prx interaction as it substantially reduces the rate of association between Srx and Prx. Finally, we carried out virtual screening to identify molecules that can successfully target Srx-Prx interaction. Multiple in-silico filters were used to minimize the number of chemicals to be tested. We identified ISO1 as an inhibitor of the Srx-Prx interaction. KD value for Srx-ISO1 interaction is calculated to be 42 nM. Together, these data helps to identify an inhibitor (ISO1) of the Srx-Prx interaction that can be further pursued to be developed as a chemotherapeutic tool.

Page generated in 0.0857 seconds