• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymologie des étapes clés de régulation du système Peroxyrédoxine / Sulfirédoxine dans le contexte de la signalisation cellulaire redox / Enzymology of the key steps regulating Peroxiredoxin / Sulfiredoxin system in the context of redox cell signaling

Boukhenouna, Samia 17 November 2014 (has links)
Les peroxyrédoxines (Prx) sont des peroxydases à thiol, ubiquitaires, qui jouent un rôle central dans la physiologie du peroxyde d’hydrogène. Une famille de Prx dite "2-Cys-Prx typique" possède une propriété unique de suroxydation de la Cys catalytique sous forme acide sulfinique, qui constitue un mécanisme de régulation des fonctions des 2-Cys-Prx typiques en tant que peroxydase, capteur de peroxyde ou protéine chaperon. La réduction des 2-Cys-Prx typiques suroxydées est catalysée par la Sulfirédoxine (Srx), une sulfinyl réductase ATP-dépendante dont la constante catalytique est de l’ordre de 1-2 min-1, une valeur faible qui doit être corrélée au rôle de Srx dans la régulation redox. L’objectif de ce travail était d’analyser l’enzymologie de la régulation du système Prx/Srx au niveau, du processus de suroxydation des 2-Cys-Prx typiques, de l’étape limitante de la Srx, et de son recyclage par les systèmes redox cellulaires. Dans un premier temps, nous avons caractérisé les deux étapes du cycle catalytique de la 2-Cys-Prx typique majeure de S. cerevisiae Tsa1, dont la compétition contrôle la sensibilité à la suroxydation, par une stratégie combinant cinétiques rapides, système enzymatique couplé et modélisation cinétique. Ces travaux suggèrent que cette compétition est contrôlée par une réorganisation conformationnelle au cours du cycle catalytique de la Tsa1. Dans un second temps, l’étude de la première étape du mécanisme catalytique de Srx, qui consiste en l’activation ATP-dépendante du groupement acide sulfinique de la 2 Cys-Prx a permis, i) de montrer que l’étape limitante de la réaction catalysée par Srx était associée au processus chimique de transfert de phosphate, et ii) de proposer un modèle d’assemblage du complexe Michaelien Prx/Srx/ATP formé lors de ce processus. Enfin, par une approche combinant cinétiques enzymatiques in vitro et génétique de la levure in vivo, nous avons établi que le mécanisme de recyclage des Srx à 1 Cys existant chez les plantes ou les mammifères implique le rôle du glutathion comme réducteur cellulaire, contrairement à la Srx de S. cerevisiae qui est recyclée par le système thiorédoxine. De façon inattendue, la spécificité du glutathion dans ce mécanisme est assurée par un événement de reconnaissance au sein du complexe Prx/Srx / The peroxiredoxins (Prx) are ubiquitous thiol peroxidases, which play a central role in the physiology of hydrogen peroxide. A subclass of Prx called "typical 2-Cys-Prx" has a unique property to hyperoxidize the catalytic Cys into the sulfinic acid form, which acts as a regulation mechanism of their functions, as peroxidase, peroxide sensor or protein chaperone. The reduction of the overoxidized form is catalyzed by sulfiredoxin (Srx), an ATP-dependent sulfinyl reductase whose catalytic constant is about 1-2 min-1, a low value that must be correlated to the role of Srx in redox regulation. The aim of this study was to analyze the enzymology of the regulation of the Prx/Srx system at three diffrents points of control: the hyper-oxidation process of typical 2-Cys-Prx, the rate-limiting step of the Srx mechanism and the recycling step of Srx by the cellular thiol redox systems. We have first characterized the competition mechanism between the two steps of the catalytic mechanism of the major typical 2-Cys-Prx of S. cerevisiae, Tsa1, through a strategy combining rapid kinetics, coupled enzyme system and kinetic modelling analysis. This work suggests that the sensitivity to hyper-oxidation is controlled by a conformational reorganization during the catalytic cycle of Tsa1. Next, the study of the first step of Srx catalytic mechanism, which involves the ATP-dependent activation of the sulfinic acid form of typical 2-Cys Prx i) has shown that the rate-limiting step is associated with the chemical phosphate transfer process, and ii) provided an assembly model of the Michaelien complex Prx/Srx/ATP, formed during this process. Finally, through the combination of in vitro enzyme kinetics and in vivo yeast genetic tools, we established that the recycling mechanism of one Cys Srx, existing in plants or mammals, involves the glutathione (GSH) as reducer in cells, contrary to the Srx from S. cerevisiae, which is recycled by the Thioredoxin system. Unexpectedly, our study suggests that GSH binds the thiolsulfinate complex, confirming the role of GSH as the primary reducing system of 1-Cys-Srx
2

ROLE OF SULFIREDOXIN INTERACTING PROTEINS IN LUNG CANCER DEVELOPMENT

Chawsheen, Hedy 01 January 2016 (has links)
Sulfiredoxin (Srx) is an antioxidant enzyme that can be induced by oxidative stress. It promotes oncogenic phenotypes of cell proliferation, colony formation, migration, and metastasis in lung, skin and colon cancers. Srx reduces the overoxidation of 2-cysteine peroxiredoxins in cells, in addition to its role of removing glutathione modification from several proteins. In this study, I explored additional physiological functions of Srx in lung cancer through studying its interacting proteins. Protein disulfide isomerase (PDI) family members, thioredoxin domain containing protein 5 (TXNDC5) and protein disulfide isomerase family A member 6 (PDIA6), were detected to interact with Srx. Therefore, I proposed that TXNDC5 and PDIA6 are important for the oncogenic phenotypes of Srx in lung cancer. In chapter one, I presented background information about the role of Srx as an antioxidant enzyme in cancer. I also explained the functional significance of PDIs as oxidoreductase and chaperones in cells. In chapter two, I verified the Srx-TXNDC5/PDIA6 interaction in HEK293T and A549 cells by co-immunoprecipitation and other assays. In TXNDC5 and PDIA6, the N-terminal thioredoxin-like domain (D1) is determined to be the main platform for interaction with Srx. The Srx-TXNDC5 interaction was enhanced by H2O2 treatment in A549 cells. Srx was determined to localize in the endoplasmic reticulum (ER) of A549 cells along with TXNDC5 and PDIA6. This localization was confirmed by both subcellular fractionation and immunofluorescence imaging experiments. In chapter three I focused on studying the physiological function of Srx interacting proteins in the ER. A549 subcellular fractionation results showed that TXNDC5 facilitates Srx retention in the ER. Moreover, TXNDC5 and Srx were found to participate in chaperone activities in lung cancer. Both proteins contributed in the refolding of heat-shock induced protein aggregates. In addition, TXNDC5 and PDIA6 were found to enhance the protein refolding in response to H2O2 treatment. Conversely, Srx appeared to have an inhibitory effect on protein folding under same treatment conditions. Downregulation of Srx, TXNDC5, or PDIA6 significantly reduced cell viability in response to tunicamycin treatment. TXNDC5 knockdown decreased the time required for the splicing of X-box binding protein-1 (XBP-1). In either knockdown Srx or TXNDC5 cells, there was an observable decrease in the expression of GRP78 and the splicing of spliced XBP-1. These results suggest a possible role of Srx in unfolded protein response signaling. TXNDC5 and PDIA6, similar to Srx, contribute to the proliferation, anchorage independent colony formation and migration of lung cancer cells. In this dissertation I concluded that Srx TXNDC5, and PDIA6 proteins participate in oxidative protein folding in lung cancer. Srx and TXNDC5 can modulate unfolded protein response (UPR) sensor activation and growth inhibition. Furthermore, TXNDC5 and PDIA6 can promote tumorigenesis of lung cancer cells. Therefore, the molecular interaction of Srx with TXNDC5/PDIA6 has the potential to be used as novel therapeutic targets for lung cancer treatment.
3

EXPLORATION OF THE SRX-PRX AXIS AS A SMALL-MOLECULE TARGET

Mishra, Murli 01 January 2016 (has links)
Lung cancer is a leading cause of cancer-related mortality irrespective of gender. The Sulfiredoxin (Srx) and Peroxiredoxin (Prx) are a group of thiol-based antioxidant proteins that plays an essential role in non-small cell lung cancer. Understanding the molecular characteristics of the Srx-Prx interaction may help design the strategies for future development of therapeutic tools. Based on existing literature and preliminary data from our lab, we hypothesized that the Srx plays a critical role in lung carcinogenesis and targeting the Srx-Prx axis or Srx alone may facilitate future development of targeted therapeutics for prevention and treatment of lung cancer. First, we demonstrated the oncogenic role of Srx in urethane-induced lung carcinogenesis in genetically modified FVB mice. The Srx-null mice showed resistance to urethane-induced lung cancer. Second, we demonstrated the Srx and Prx sites important for Srx-Prx interaction. The orientation of this arm is demonstrated to cause some steric hindrance for the Srx-Prx interaction as it substantially reduces the rate of association between Srx and Prx. Finally, we carried out virtual screening to identify molecules that can successfully target Srx-Prx interaction. Multiple in-silico filters were used to minimize the number of chemicals to be tested. We identified ISO1 as an inhibitor of the Srx-Prx interaction. KD value for Srx-ISO1 interaction is calculated to be 42 nM. Together, these data helps to identify an inhibitor (ISO1) of the Srx-Prx interaction that can be further pursued to be developed as a chemotherapeutic tool.

Page generated in 0.0399 seconds