• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A radio study of meteoric ionization

Brown, Nicholas January 1972 (has links)
127 leaves : ill., appendix / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physics, 1973
2

A radio study of meteoric ionization.

Brown, Nicholas. January 1972 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Physics, 1973.
3

A radio study of ionization in meteor trails /

Stone, Brian James. January 1967 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Physics Dept., 1967. / Typescript.
4

Predicted and measured arrival rates of meteors over forward-scatter links.

Mawrey, Robert Stanley. January 1991 (has links)
Investigations into currently accepted methods of modelling variations in the arrival rate of meteors over forward-scatter meteor links have revealed some shortcomings. In these investigations, particular emphasis is placed on the work of Rudie due to its current acceptance in the literature. The non-uniform radiant distribution of meteors measured by Davies and modelled by Rudie, is critically examined and predictions using these models are compared with measured results taken over two forward-scatter links in the Southern Hemisphere. A new, alternative method of including the effect of non-uniform radiant distributions on the predicted arrival rate of meteors is given. The method used by Rudie to model Davies' measured radiant distribution is shown to be unnecessarily complicated and a simpler alternative is given. Furthermore, Rudie's distribution is shown not to be derived from a particular set of Davies' results as implied by Rudie. Other non-uniform distributions of meteors are also investigated. Comparisons between monthly-averaged daily cycles of measured and predicted arrival rates of meteors for a midpath and an endpath meteor link are used to reveal the validity and limitations of the published distributions. A new graphical method is used to aid in determining the validity and limitations of the non-uniform distributions. Discrepancies in the published predicted and measured annual variations in the arrival rate of meteors are investigated. Contrary to recently published information, predicted annual variations in the arrival rate of meteors for meteor radiants close to the ecliptic are shown to be comparable to measured results. / Thesis (Ph.D.)-University of Natal, Durban, 1991.
5

A practical investigation of meteor-burst communications.

Melville, Stuart William. January 1991 (has links)
This study considers the meteor-burst communication (MBC) environment at three levels. At the lowest level, the trails themselves are studied and analysed. Then individual links are studied in order to determine the data throughput and wait time that might be expected at various data rates. Finally, at the top level, MBC networks are studied in order to provide information on the effects of routing strategies, topologies, and connectivity in such networks. A significant amount of theoretical work has been done in the classification of meteor trails, and the analysis of the throughput potential of the channel. At the same time the issues of wait time on MBC links, and MBC network strategies, have been largely ignored. The work presented here is based on data captured on actual monitoring links, and is intended to provide both an observational comparison to theoretical predictions in the well-researched areas, and a source of base information for the others. Chapter 1 of this thesis gives an overview of the field of meteor-burst communications. Prior work in the field is discussed, as are the advantages and disadvantages of the channel, and current application areas. Chapter 2 describes work done on the classification of observed meteor trails into distinctive 'families'. The rule-based system designed for this task is discussed as well as the eventual classification schema produced, which is far more comprehensive and consistent than previously proposed schemas. Chapter 3 deals with the throughput potential of the channel, based on the observed trails. A comparison to predicted results, both as regards fixed and adaptive data-rates, is made with some notable differences between predicted v results and observed results highlighted. The trail families with the largest contribution to the throughput capacity of the channel are identified. Chapter 4 deals with wait time in meteor-burst communications. The data rates at which wait time is minimised in the links used are found, and compared to the rates at which throughput was optimised. These are found to be very different, as indeed are the contributions of the various trail families at these rates. Chapter 5 describes a software system designed to analyse the effect of routing strategies in MBC networks, and presents initial results derived from this system. Certain features of the channel, in particular its sporadic nature, are shown to have significant effects on network performance. Chapter 6 continues the presentation of network results, specifically concentrating on the effect of topologies and connectivity within MBC networks. Chapter 7 concludes the thesis, highlighting suggested areas for further research as well as summarising the more important results presented. / Thesis (Ph.D.)-University of Natal, Durban, 1991.
6

Fine structure in radio meteor showers

Badger, Daniel P. January 2002 (has links)
This thesis is concerned with the observation and study of meteors with a narrow beam VHF radar operated by the University of Adelaide at the Buckland Park research station, in particular the study of the structure and characteristics of meteor showers and the geocentric speeds of meteors. There have been several observations of meteors with the radar previously (Steel & Elford 1991, Cervera 1996, Taylor et al. 1996), but this is the first with an automated data analysis directed to a systematic study of the properties of meteor showers. The Buckland Park VHF radar offers significant advantages over the wide beam radars traditionally used for meteor observation. The narrow beam, while reducing the collecting area of the radar, allows observations of much lower electron line densities than a wide beam radar of similar power. It also allows the determination of meteor shower radiants by the use of the radar response function. Pulse repetition frequencies of up to 2000 Hz allow excellent time resolution, and the ability to record in-phase and quadrature data allows the phase information to be used. This phase information is important as it allows the use of the phase information to accurately determine radial wind drifts, and the atmospheric speeds of meteoroids. During 1998, 1999 and 2000, observations were made of a number of meteor showers and the sporadic background. These showed that the η-Aquarid meteor shower was active in these years, and the Orionid and the Leonid showers were detected in 1999. Analysis of the η-Aquarid activity revealed multiple peaks which show that the shower is produced by at least four distinct "filaments", subsets of the meteoroid stream which produces the shower. Not only does the stream have spatial structure, containing groups of particles in different orbits, but also the presence or absence of the peaks in a random fashion from day to day shows that the filaments are themselves made up of clumps of particles. The radar response function is developed and used to determine radiants for the four η-Aquarid filaments. Evidence is given of a significant number of meteors detected at heights which are above the "radar ceiling", a height at which the theoretical initial radius attenuation factor is near zero for radars operating at the frequency of the Buckland Park VHF Radar, and underdense echoes should be impossible to detect. Investigation showed that over 60 % of meteor trails at heights above the ceiling (105 km) were underdense. Not only does the expected meteor height distribution extend up to 130 km, but also another distribution, peaking at 145 km is uncovered. Diffusion coefficients estimated from the decay of echoes are compared to theoretical calculations. There is a general agreement, but a number of meteor trails show slower diffusion than expected. This is attributed to the effect of the Earth's magnetic field. Three methods are used to determine meteoroid speeds using the phase data, each applying to a different type of meteor echo, and in combination, speeds could be determined for over 90 % of all meteor echoes. The first, the pre-t0 method can be applied to transverse meteor echoes with great success, although it may underestimate the speed of weak echoes with speeds under 15 km s-¹. Using the Cauchy approximations to the Fresnel integrals allows speed determination from head echoes which were aliased near the t0-point. Meteor trails which form at a small angle to the boresight of the radar beam are called "down-the-beam" echoes, and a new method is developed to determine the meteoroid speed and deceleration from these. The speed measurements of meteors detected during the η-Aquarids show a strong peak in the distribution at 66 km s-¹, as well as a smaller peak at 50 km s-¹, which may due to a minor shower. The sporadic background shows a broad peak at 25 km s-¹, with a smaller peak at 58 km s-¹. Distributions of the speed of meteors in the sporadic background show good agreement with previous observations (McCrosky & Posen 1961, Nilsson 1962, Elford et al. 1995, Cervera 1996), with the exception of meteoroid speeds smaller than 15 km s-¹, which can be underestimated by the pre-t0 technique. / Thesis (Ph.D.)--Physics and Mathematical Physics, 2002.
7

Neural networks and early fast Doppler for prediction in meteor-burst communications systems.

Fraser, David Douglas. January 1994 (has links)
In meteor-burst communications systems, the channel is bursty with a continuously fluctuating signal-to-noise ratio. Adaptive data rate systems attempt to use the channel more optimally by varying the bit rate. Current adaptive rate systems use a method of closed-loop decision-feedback to control the transmitted data rate. It is proposed that an open-loop adaptive data rate system without a decision feedback path may be possible using implicit channel information carried in the first few milliseconds of the link establishment probe signal. The system would have primary application in low-cost half-duplex telemetry systems. It is shown that the key elements in such a system would be channel predictors. The development of these predictors is the focus of this research. Two novel methods of predicting channel parameters are developed. The first utilises early fast Doppler information that precedes many long duration, large signal-to-noise-ratio overdense trails. The presence of early fast Doppler at the trail commencement is used as a toggle to operate at a higher data rate. Factors influencing the use of early fast Doppler for this purpose are also presented. The second method uses artificial neural networks. Data measured during trail formation is processed and presented to the neural networks for prediction of trail parameters. Several successful neural networks are presented which predict trail type, underdense or overdense, and peak trail amplitude from the first 50ms of the trail's lifetime. This method allows better estimation of the developing trail. This fact can be used to implement a multi-rate open-loop adaptive data rate system. / Thesis (Ph.D.)-University of Natal, Durban, 1994.
8

An adaptive protocol for use over meteor scatter channels.

Spann, Michael Dwight. January 1987 (has links)
Modem technology has revived interest in the once popular area of meteor scatter communications. Meteor scatter systems offer reliable communications in the 500 to 2000 km range all day, every day. Recent advances in microprocessor technology have made meteor scatter communications a viable and cost effective method of providing modest data rate communications. A return to the basic fundamentals has revealed characteristics of meteor scatter propagation that can be used to optimize the protocols for a meteor scatter link. The duration of an underdense trail is bounded when its initial amplitude is known. The upper bound of the duration is determined by maximizing the classical underdense model. The lower bound is determined by considering the volume of sky utilized. The duration distribution between these bounds is computed and compared to measured values. The duration distribution is then used to specify a fixed data rate, frame adaptive protocol which more efficaciously utilizes underdense trails, in the half duplex environment, than a non-adaptive protocol. The performance of these protocols is verified by modeling. / Thesis (Ph.D.)-University of Natal, Durban, 1987.

Page generated in 0.1674 seconds