• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A radio study of meteoric ionization

Brown, Nicholas January 1972 (has links)
127 leaves : ill., appendix / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physics, 1973
2

Variability of the peak height of the ionospheric F2 layer over South Africa

Mbambo, Makhangela Casey January 2011 (has links)
Abstract This thesis will present an investigation into the variability of the maximum height of the ionospheric F2 layer, hmF2, with hour, season and latitude over the South African region. The dependence of hmF2 on solar and magnetic activity is also investigated. Data from three South African stations, namely Madimbo (22.4 S, 26.5 E), Grahamstown (33.3 S, 26.5 E) and Louisvale (28.5 S, 21.2 E) were used in this study. Initial results indicate that hmF2 shows a larger variability around midnight than during daytime for all the seasons. Monthly median values for hmF2 were used in all cases to illustrate the variability, and the International Reference Ionosphere (IRI) model has been used to investigate hmF2 predictability over South Africa. This research represents the initial steps towards a predictive model for the hmF2 parameter, with the long term aim of developing a new global hmF2 predictive model for the IRI. It is believed that this work will contribute signi cantly towards this aim through the understanding of the hmF2 parameter over a region that has not previously been investigated.
3

Development of an ionospheric map for Africa

Ssessanga, Nicholas January 2014 (has links)
This thesis presents research pertaining to the development of an African Ionospheric Map (AIM). An ionospheric map is a computer program that is able to display spatial and temporal representations of ionospheric parameters such as, electron density and critical plasma frequencies, for every geographical location on the map. The purpose of this development was to make the most optimum use of all available data sources, namely ionosondes, satellites and models, and to implement error minimisation techniques in order to obtain the best result at any given location on the African continent. The focus was placed on the accurate estimation of three upper atmosphere parameters which are important for radio communications: critical frequency of the F2 layer (foF2), Total Electron Content (TEC) and the maximum usable frequency over a distance of 3000 km (M3000F2). The results show that AIM provided a more accurate estimation of the three parameters than the internationally recognised and recommended ionosphere model (IRI-2012) when used on its own. Therefore, the AIM is a more accurate solution than single independent data sources for applications requiring ionospheric mapping over the African continent.
4

Investigation into the extended capabilities of the new DPS-4D ionosonde

Ssessanga, Nicholas January 2011 (has links)
The DPS-4D is the latest version of digital ionosonde developed by the UMLCAR (University of Massachusetts in Lowell Center for Atmospheric Research) in 2008. This new ionosonde has advances in both the hardware and software which allows for the promised advanced capabilities. The aim of this thesis was to present results from an experiment undertaken using the Hermanus DPS-4D (34.4°S 19.2°E, South Africa), the first of this version to be installed globally, to answer a science question outside of the normally expected capabilities of an ionosonde. The science question posed focused on the ability of the DPS-4D to provide information on day-time Pc3 pulsations evident in the ionosphere. Day-time Pc3 ULF waves propagating down through the ionosphere cause oscillations in the Doppler shift of High Frequency (HF) radio transmissions that are correlated with the magnetic pulsations recorded on the ground. Evidence is presented which shows that no correlation exists between the ground magnetic pulsation data and DPS-4D ionospheric data. The conclusion was reached that although the DPS-4D is more advanced in its eld of technology than its predecessors it may not be used to observe Pc3 pulsations.

Page generated in 0.1041 seconds