• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung putativer Kaliumkanäle und Na+/H+-Antiporter von Methanococcus jannaschii anhand heterologer Expression in Escherichia coli

Hellmer, Jens. January 2003 (has links) (PDF)
Hannover, Universiẗat, Diss., 2003.
2

Strukturanalyse der Riboflavin-Synthase aus Methanococcus jannaschii

Ramsperger, Arne. Unknown Date (has links)
Techn. Universiẗat, Diss., 2005--München.
3

Characterization of the KdpFABC complex from Escherichia coli, of soluble subdomains from KdpB, and of a homologous protein of Methanococcus jannaschii

Bramkamp, Marc. Unknown Date (has links) (PDF)
University, Diss., 2003--Osnabrück.
4

Identification and Characterization of the Enzymes Involved in Biosynthesis of FAD and Tetrahydromethanopterin in Methanocaldococcus jannaschii

Mashhadi, Zahra 09 September 2010 (has links)
Methanogens belong to the archaeal domain, are anaerobes and produce methane from CO2 or other simple carbon compounds. Methanogenesis is a key process of the global carbon cycle and methanogens produce about 75-85% of all methane emissions. Besides the universally occurring coenzymes that are needed in normal metabolic pathways, such as biotin, coenzyme A, thiamine, FAD, PLP, etc.; methanogens need six additional coenzymes that are involved in the methane production pathway: methanofuran, tetrahydromethanopterin, coenzyme F₄₂₀, coenzyme M, coenzyme B, and coenzyme F₄₃₀. Although now it is known that some non-methanogenic archaea and bacteria have several of these coenzymes, they are named methanogenic coenzymes since these six coenzymes were first isolated and identified from methanogens. We are using Methanocaldococcus jannaschii as a model organism of methanogens to understand and investigate pathways of coenzymes biosynthesis. Our laboratory is involved in establishing the chemical functions of hypothetical proteins that function in targeted biochemical pathways leading to coenzyme production within the euryarchaeon M. jannaschii and identifying their corresponding genes. While there are many coenzymes present in this organism, my focus is on the biosynthetic pathways of tetrahydromethanopterin and FAD. 7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H₂N-cP) is the first intermediate in the biosynthesis of the pterin portion of tetrahydromethanopterin (H₄MPT), a C₁ carrier coenzyme. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I. An Fe(II)-dependent cyclic phosphodiesterase (MptB, MJ0837 gene product) hydrolyzes the cyclic phosphate of H₂N-cP to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-D-neopterin 3'-monophosphate. MptB requires Fe²⁺ for activity, the same as observed for MptA. Thus the first two enzymes involved in H4MPT biosynthesis in the Archaea are Fe²⁺ dependent. In the FAD biosynthetic pathway, the conversion of riboflavin first into FMN and then to FAD is catalyzed by a bifunctional enzyme (RibF) that first acts as a kinase converting riboflavin to FMN in the presence of ATP and then acts as a nucleotidyl transferase using a second ATP to convert the FMN to FAD. Identification of the archaeal CTP-dependent riboflavin kinase, RibK (MJ0056 gene product) led us to identify a archaeal monofunctional FAD synthetase, RibL (MJ1179 gene product). RibL is the only air-sensitive FAD synthetase identified. / Ph. D.
5

Sulfite reductase and thioredoxin in oxidative stress responses of methanogenic archaea

Susanti, Dwi 22 August 2013 (has links)
Methanogens are a group of microorganisms that utilize simple compounds such as H₂ + CO₂, acetate and methanol for the production of methane, an end-product of their metabolism.  These obligate anaerobes belonging to the archaeal domain inhabit diverse anoxic environments such as rice paddy fields, human guts, rumen of ruminants, and hydrothermal vents.  In these habitats, methanogens are often exposed to O₂ and previous studies have shown that many methanogens are able to tolerate O2 exposure.  Hence, methanogens must have developed survival strategies to be able to live under oxidative stress conditions.  The anaerobic species that lived on Earth during the early oxygenation event were first to face oxidative stress.  Presumably some of the strategies employed by extant methanogens for combating oxidative stress were developed on early Earth.   Our laboratory is interested in studying the mechanism underlying the oxygen tolerance and oxidative stress responses in methanogenic archaea, which are obligate anaerobe.  Our research concerns two aspects of oxidative stress.  (i) Responses toward extracellular toxic species such as SO32-, that forms as a result of reactions of O₂ with reduced compounds in the environment.  These species are mostly seen in anaerobic environments upon O₂ exposure due to the abundance of reduced components therein.  (ii) Responses toward intracellular toxic species such as superoxide and hydrogen peroxide that are generated upon entry of O₂ and subsequent reaction of O₂ with reduced component inside the cell.  Aerobic microorganisms experience the second problem.  Since a large number of microorganisms of Earth are anaerobes and the oxidative defense mechanisms of anaerobes are relatively less studied, the research in our laboratory has focused on this area.  My thesis research covers two studies that fall in the above-mentioned two focus areas. In 2005-2007 our laboratory discovered that certain methanogens use an unusual sulfite reductase, named F420-dependent sulfite reductase (Fsr), for the detoxification of SO32- that is produced outside the cell from a reaction between oxygen and sulfide.  This reaction occurred during early oxygenation of Earth and continues to occur in deep-sea hydrothermal vents.  Fsr, a flavoprotein, carries out a 6-electron reduction of SO32- to S2-.  It is a chimeric protein where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively.  We hypothesized that Fsr was developed in a methanogen from pre-existing parts.  To begin testing this hypothesis we have carried out bioinformatics analyses of methanogen genomes and found that both Fsr-N homologs and Fsr-C homologs are abundant in methanogens.  We called the Fsr-C homolog dissimilatory sulfite reductase-like protein (Dsr-LP).  Thus, Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP) in methanogens.  During the course of this study, we also identified two new putative F420H2-dependent enzymes, namely F420H2-dependent glutamate synthase and assimilatory sulfite reductase. Another aspect of my research concerns the reactivation of proteins that are deactivated by the entry of oxygen inside the cell.  Here I focused specifically on the role of thioredoxin (Trx) in methanogens.  Trx, a small redox regulatory protein, is ubiquitous in all living cells.  In bacteria and eukarya, Trx regulates a wide variety of cellular processes including cell divison, biosynthesis and oxidative stress response.  Though some Trxs of methanogens have been structurally and biochemically characterized, their physiological roles in these organisms are unknown.  Our bioinformatics analysis suggested that Trx is ubiquitous in methanogens and the pattern of its distribution in various phylogenetic classes paralleled the respective evolutionary histories and metabolic versatilities.  Using a proteomics approach, we have identified 155 Trx targets in a hyperthermophilic phylogenetically deeply-rooted methanogen, Methanocaldococcus jannaschii.  Our analysis of two of these targets employing biochemical assays suggested that Trx is needed for reactivation of oxidatively deactivated enzymes in M. jannaschii.  To our knowledge, this is the first report on the role of Trx in an organism from the archaeal domain. During the course of our work on methanogen Trxs, we investigated the evolutionary histories of different Trx systems that are composed of Trxs and cognate Trx reductases.  In collaboration with other laboratories, we conducted bioinformatics analysis for the distribution of one of such systems, ferredoxin-dependent thioredoxin reductase (FTR), in all organisms.  We found that FTR was most likely originated in the phylogenetically deeply-rooted microaerophilic bacteria where it regulates CO₂ fixation via the reverse citric acid cycle. / Ph. D.
6

An Isotopic, Geochemical and Petrological Investigation of Organic Matter-rich Archaean Metasediments from the North Pilbara Terrane, Pilbara Craton, Western Australia: In Search of Early Life.

Lawrence Duck Unknown Date (has links)
Various organic compounds, including graphitic carbon, can be formed abiotically in hydrothermal systems, such that evidence for early life must necessarily combine geological, morphological and geochemical data to be compelling. Carbonaceous materials (CM) have been isolated from three rock packages of mid to early Archaean age from the Pilbara Craton of Western Australia. This CM has been subjected to a multidisciplinary approach utilising a variety of analytical and observational techniques, in an attempt to establish the occurrence, associations, mineral affinities, historical environments of growth, and the metamorphic/thermal history experienced by what may be some of the earliest, relatively pristine record of 3500 million year old life on this planet. CM isolated from drillcore obtained from the first of these localities, the 3.24 Ga Sulphur Springs volcanic hosted massive sulphide (VHMS) deposit, occurs as isotopically light (δ13C values of −34.0 ‰ to −26.8 δ13C) finely striated, lenticular to banded material emplaced parallel to original sedimentary bedding planes within the fine-grained silicified epiclastic hanging wall sediments. Petrological and transmission electron microscopy (TEM) observations have revealed well-preserved bundles of filamentous and tubular structured microbial remains closely resembling both modern-day and more ancient microbial forms documented from sea floor hydrothermal environments. Total organic carbon (TOC) has a range of <1.0 to 2.3 %, while the thermal maturity (%Ro) of the filamentous bundles points to maximum temperatures since deposition of around 90–100 °C, a factor that has enabled the preservation of their morphology. These results are suggestive of a well-developed Archaean sediment-hosted microbial community, situated within a basinal environment associated with an active centre of seafloor hydrothermal activity. The majority of the CM isolated from drillcore samples of the second locality, the 3.46 Ga Salgash Subgroup, a lower member of the Apex Basalt, also appears as in situ, bedding parallel bands intercalated with foliated altered argillaceous sandstone beds. TOC of the samples ranges from 1.25 to 11.48 %, while carbon content varies from 2.05 to 32.17 %. δ13C results are relatively heavy, varying from -30.4 to -22.5 ‰. Thermal maturity indicators of 10-13 %Ro suggest the CM having been subjected to temperatures greater than normally obtained from processes associated with burial. Electron paramagnetic resonance (EPR) results showed this CM in a highly ordered graphitic state. Optically, the graphite lacks the typical pronounced anisotropy characterising graphites in metamorphic terranes. Graphitisation therefore, is likely the result of rapid heating at very high temperature. HRTEM of this material revealed an extremely high level of molecular ordering contemporaneous with the presence of the C60 fullerene molecules within carbon nanotubes. These forms are a key to the distinction between biologically and abiotically synthesized CM, both by their small size and their resistance to thermal degradation. The occurrence of these carbon forms in terrestrial deposits is rare, and usually associated with wildfires, lighting strike or meteoritic impact. In the case of the Salgash CM, the formation of these molecules and the isotropic graphitised state of the CM is interpreted as a result of emplacement under pressure of very high temperature (komatiitic/ peridotite) lavas. The thermal overprint of the CM by such a high temperature process resulted in the volatilisation of the organic material, destruction of any primary biological morphology and the subsequent reorganisation of the residual CM, resulting in increased molecular ordering. In the third part of the study, CM isolated from drillcore samples of the ca. 3.5 Ga Dresser Formation bedded black chert-barite units, occurs in both dispersed and layered forms, interlayered with fine-grained silica. The intimate association of the CM and silica strongly resembles silicified microbial colonies from active hydrothermal systems, which have been previously proposed as analogues of Archaean hydrothermal sites. Isotopically light δ13C values from -38.2 to -32.1 ‰, and the association of C, H, and N, are highly indicative of a biological origin for the material. Palaeotemperatures calculated from δ18O isotope analysis of quartz chips indicate a depositional temperature for the hydrothermal veins ranging from ~120 °C to ~200 °C. 207Pb-206Pb isotope analyses conducted on pyrites extracted from the interbedded barite units reveal a dual MORB and Erosion mix source for the Pb, which gives an average 207Pb/206Pb age of 3531±42 Ma for the deposit. Ro measurements reveal four distinct CM populations, defined as ACM, A1CM, BCM, and CCM, which represent temperatures ranging from 170 °C to potentially >400 °C. TEM and HRTEM observations of the lower temperature CM population show morphological entities strongly suggestive of microbial remains, including possible cell wall remnants. Higher Ro rank CM commonly fills or coats mineral grains and lacks distinguishable structures, which is consistent with an increased thermal degradation /hydrothermal overprint. The geological setting and mineralogy of the Dresser Formation endorse its formational history as a silica-barite dominated seafloor hydrothermal deposit, most likely analogous to modern “white smokers”. The occurrence of the predominant CM (type ACM) in more or less continuous bands and laminae within the sedimentary rocks suggest an in situ, syndepositional source for the majority of this material, whereas the dispersed nature of type BCM particles indicates a recycled nature. The occurrence of type CCM within fluid inclusions gives an insight into the primary morphology of the non-degraded original microbial cells that may have existed at that time. These observations, combined with the carbon isotopic heterogeneity and fractionations are suggestive of chemosynthetic microbes occupying a seafloor hydrothermal system where rapid silicification at relatively low temperature preserved the CM. Finally, in an effort to further understand the CM structures observed in the rocks of the Dresser Formation in the context of present day microbial colonies in similar environments, a comparative morphological study was conducted using a potential modern analogue derived from an active seafloor hydrothermal environment. Such methodology utilises the standard classification used in biological species identification, which is initially based on visual identification of specific features, whether by the naked eye, light microscopy or electron microscopy. The extant hyperthermophilic microbe Methanocaldococcus jannaschii was cultured under conditions similar to the Archaean seafloor, simulating an increased thermal maturity by artificially induced autoclaving at 100 °C (1 atm) and 132 °C (2 atm). A striking resemblance to the early Archaean forms observed in the Dresser CM was evident in both wall structure and thermal degradation mode of the cultured microbe. Cell disintegration of the cultures occurred at 100 °C marking the limits of life, whereas complete disintegration, deformation and shrinkage of the cells occurred at 132 °C. These comparative observations present as a feasible way of understanding the structural features in CM identified in Archaean sedimentary packages.
7

Untersuchung von Strukturfunktionsbeziehungen bei Enzymen der Tetrahydrobiopterin- und Riboflavinbiosynthese

Schiffmann, Susanne. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
8

Deciphering Structure-Function Relationships in a Two-Subunit-Type GMP Synthetase by Solution NMR Spectroscopy

Ali, Rustam January 2013 (has links) (PDF)
The guanosine monophosphate synthetase (GMPS) is a class I glutamine amidotransferase, involved in the de-novo purine nucleotide biosynthesis. The enzyme catalyzes the biochemical transformation of xantosine (XMP) into guanosine monophosphate (GMP) in presence of ATP, Mg2+ and glutamine. All GMPSs consist of two catalytic sites 1) for GATase activity 2) for the ATPPase activity. The two catalytic sites may be housed in the same polypeptide (two-domain-type) or in separate polypeptides (two-subunit-type). Most of the studies have been performed on two-domain-type GMPSs, while only one study has been reported from two-subunit-type GMPS (Maruoka et al. 2009). The two-subunit-type GMPS presents an example where the component reactions of a single enzymatic reaction are carried out by two distinct subunits. In order to get better understanding of structural aspects and mechanistic principle that governs the GMPS activity in two-subunit-type GMPSs, we initiated the study by taking GMPS of Methanocaldococcus jannaschii as a model system. The GMPS of M. jannaschii (Mj) is a two-subunit-type protein. The GATase subunit catalyzes the hydrolysis of glutamine to produce glutamate and ammonia. The ATPPase subunit catalyses the amination of XMP to produce GMP using the ammonia generated in GATase subunit. Since the two component reactions are catalysed by two separate subunits and are coupled in the way that product of one reaction (ammonia) acts as a nucleophile in the second reaction. The cross-talk between these two subunits in order to maximise the efficiency of overall GMPS warrants investigation. The GATase activity is tightly regulated by the interaction with ATPPase domain/subunit, in all GMPS except in the case of P. falciparum. This interaction is facilitated by substrate binding to the ATPPase domain/subunit. Though, the conditions for the interaction between two subunits is known in a two-subunit-type GMP synthetase from P. horikoshii, the structural basis of substrate dependent interaction is not known. As a first step to understand the structural basis of interaction between the Mj GATase and Mj ATPPase subunits, we have determined the structure of Mj GATase (21 kDa) subunit using high resolution, multinuclear, multidimensional NMR spectroscopy. Sequence specific resonance assignments were obtained through analysis of various 2D and 3D hetero-nuclear multidimensional NMR experiments. NMR based distance restraints were obtained from assignment of correlations observed in NOE based experiments. Data were acquired on isotopically enriched samples of Mj GATase. The structure of Mj GATase (2lxn) was solved by using cyana-3.0 using NMR based restraints as input for the structure calculation. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35±0.06 Å for backbone atoms and 0.8±0.06 Å for all heavy atoms. Attempts were also made to obtain assignments for the 69.6 kDa dimeric ATPPase subunit. Partial assignments have been obtained for this subunit. The GATase subunit is catalytically inactive. So far, there has been only one published report on a two-subunit-type GMPS from P. horikashii. The study has shown that the catalytic activity of GATase is regulated by the GATase-ATPPase interaction which is facilitated by the substrate binding to the ATPPase subunit. For the first time, we have provided the structural basis of interaction between GATase-ATPPase (112 kDa) in a two-subunit-type GMPS. Observed line width changes were used to identify residues in GATase residues that are involved in the Mj GATase-ATPPase interaction. Our data provides a possible explanation for conformational changes observed in the Mj GATase subunit upon GATase-ATPPase interaction that lead to GATase activation. Ammonia is generated in GATase subunit and is very reactive and labile. Thus, the faithful transportation of ammonia from GATase to ATPPase subunit is very crucial for optimal GMPS activity. Till date, a PDB query for GMPS retrieves only one structure which belongs to two-subunit-type GMPS, where authors have determined the structures of GATase and ATPPase subunits separately. However, the structure of holo-GMPS is not determined yet. Using interface information from experimental data and HADDOCK, we have constructed a model for the holo-GMPS from M. jannaschii. A possible ammonia channel has been deduced using the programs MOLE 2.0 and CAVER 2.0. This ammonia channel has a length of 46 Å, which is well within the range of the lengths calculated for similar channels in other glutamine amidotransferase. It had been suggested earlier that in addition to the magnesium required for charge stabilization of ATP, additional binding sites were present on GMPS. The effect of excess Mg2+ requirement on the GMPS activity has been studied in two-domain-type GMPS. However, the interaction between GATase and Mg2+ has been not investigated in any GMPS. This prompted us to investigate the effect of MgCl2 on Mj GATase subunit. For the first time, using chemical shift perturbation, we have established interaction between Mj GATase and Mg2+. The dissociation constant (Kd) of the Mj GATase-Mg2+ interaction was determined. The Kd value was found to be 1 mM, which indicates a very weak interaction. The substrate of the GATase subunit is glutamine. The condition of the hydrolysis of the glutamine is known in GMPS. However, the binding of the glutamine and associated conformational changes in GATase have been not studied in GMPS. Furthermore, till date there is no structure available for the glutamine bound GMPS/GATase. Using isotope edited one dimensional and two-dimensional NMR spectroscopy; we have shown that the Mj GATase catalytic residues are not in a compatible conformation to bind with glutamine. Thus, a conformational change in Mj GATase subunit is a pre-requisite condition for the binding of glutamine. These conformational changes are brought by the Mj GATase-ATPPase interaction.
9

Structure-Function Studies On Triosephoshate Isomerase From Plasmodium falciparum And Methanocaldococcus jannaschii

Banerjee, Mousumi 04 1900 (has links)
This thesis describes studies directed towards understanding structure-function relationships of triosephosphate isomerase (TIM), from a protozoan parasite Plasmodium falciparum and a thermophilic archaea Methanocaldococcus jannaschii. Triosephosphate isomerase, a ubiquitous glycolytic enzyme, has been the subject of biochemical, enzymatic and structural studies for the last five decades. Studies on TIM have been central to the development of mechanistic enzymology. The present study investigates the role of specific residues in the structure and function of Plasmodium falciparum triosephosphate isomerase (PfTIM). The structure and stability of a tetrameric triosephosphate isomerase from Methanocaldococcus jannaschii (MjTIM) is also presented. Chapter 1 provides a general introduction to the glycolytic enzyme triosephosphate isomerase, conservation of TIM sequences, its fold and three dimensional organization. The isomerisation reaction interconverting dihydroxyacetone phosphate and glyceraldehyde 3phosphate catalyzed by triosephosphate isomerase is an example of a highly stereospecific proton transfer process (Hall & Knowles, 1975; Rieder & Rose, 1959). This chapter briefly reviews mechanistic features and discusses the role of active site residues and the functional flexible loop 6. Triosephosphate isomerase adopts the widely occurring ( β/ α)8 barrel fold and mostly occurs as a dimer (Banner et al., 1975). Protein engineering studies, related to folding, stability and design of monomeric TIM are also addressed. A brief introduction to thermophilic TIMs and higher oligomeric TIMs is given. The role of this enzyme in disease states like hemolytic anemia and neuromuscular dysfunction is surveyed. The production of methylglyoxal, a toxic metabolite, as a byproduct of the TIM reaction is also considered. Many proteins utilize segmental motions to catalyze a specific reaction. The omega loop (loop 6) of triosephosphate isomerase is important for preventing the ene-diol intermediate from forming the cytotoxic byproduct, methylglyoxal. The active site loop-6 of triosephosphate isomerase moves about 7Ǻ on ligand binding. It exhibits a hinged lid motion alternating between two well defined, “open” and “closed”, conformations (Joseph et al., 1990). Though the movement of loop 6 is not ligand gated, in crystals the ligand bound forms invariably reveal a closed loop conformation. Plasmodium falciparum TIM is an exception which predominantly exhibits “open” loop conformations, even in the ligand bound state (Parthasarathy et al., 2002). Phe 96 is a key residue that is involved in contacts between the flexible loop-6 and the protein body in PfTIM. Notably, in all TIM sequences determined thus far, with the exception of plasmodial sequences, this residue is Ser 96. In Chapter 2 the mutants F96S, F96H and F96W are reported. The crystal structures of the mutant enzymes with or without bound ligand are described. In all the ligand free cases, loop-6 adopts an “open” conformation. Kinetic parameters for all the mutants establish that residue 96 does not play an essential role in modulating the loop conformation but may be important for ligand binding. Structural analysis of the mutants along with WT enzyme reveals the presence of a water network which can modulate ligand binding. Subunit interfaces of oligomeric proteins provide an opportunity to understand protein- protein interactions. Chapter 3 describes biochemical and biophysical studies on two separate dimer-interface destabilizing mutants C13E and W11F/W168F/Y74W of PfTIM. The intention was to generate a stable monomer by disrupting the interaction hubs. C13 is a part of a large hydrophobic patch (Maithal et al., 2002a) at the dimer interface. Introduction of a negative charge at position 13 destabilizes the interface and reduces activity. Y74 is a part of an aromatic cluster of the interface (Maithal et al., 2002b). The Y74W triple mutant was designed to disrupt the aromatic cluster by introducing additional atoms. Tryptophan is also a fluorophore, allowing studies of the dimer disruption by fluorescence, after mutating the two inherent tryptophan residues, W11 and W168 to phenylalanine. The mutants showed reduced activity and were more sensitive than the wild type enzyme to chemical denaturants as well as thermal denaturation. Evidenced for monomer formation is presented. These studies together with previous work reveal that the interface is important for both activity and stability. In order to develop a model for understanding the relationship between protein stabilization and oligomeric status, characterization of the TIM from Methanocaldococcus jannaschii (MjTIM) has been undertaken. Chapter 4 describes the purification and characterization of MjTIM. The MjTIM gene was cloned and expressed in pTrc99A and protein was isolated from AA200 E. coli cells. Hyperexpressed protein was purified to homogeneity and relevant kinetic parameters have been determined. The tetrameric nature of MjTIM is established by gel filtration studies. Circular dichroism (CD) studies establish the stability of the overall fold, even at temperatures as high as 95ºC. A surprising loss of enzyme activity upon prolonged incubation at high temperature was observed. ESI-MS studies establish that oxidation of thiol groups of the protein may be responsible for the thermal inactivation. Chapter 5 describes the molecular structure of MjTIM, determined in collaboration with Prof. MRN Murthy’s group at the Indian Institute of Science (Gayathri et al., 2007). The crystal structure of the recombinant triosephosphate isomerase (TIM) from the archaeabacteria Methanocaldococcus jannaschii has been determined at a resolution of 2.3 Å. MjTIM is tetrameric, as suggested by solution studies and from the crystal structure, as in the case of two other structurally characterised archaeal TIMs. The archaeabacterial TIMs are shorter compared to the dimeric TIMs, with the insertions in the dimeric TIMs occurring in the vicinity of the putative tetramer interface, resulting in a hindrance to tetramerization in the dimeric TIMs. The charge distribution on the surface of archaeal TIMs also facilitates tetramerization. Analysis of the barrel interactions in TIMs suggests that these interactions are unlikely to account for the thermal stability of archaeal TIMs. A feature of the unliganded structure of MjTIM is the complete absence of electron density for the loop 6 residues. The disorder of the loop may be ascribed to a missing salt bridge between residues at the N- and C- terminal ends of the loop in MjTIM. Chapter 6 is a follow up of an interesting observation made by Vogel and Chmielewski (1994), who noticed that subtilisin cleaved rabbit muscle triosephosphate isomerase religated spontaneously upon addition of organic solvents. Further extension of this nicking and religation process with PfTIM emphasizes the importance of tertiary interactions in contributing to the stability of the (β/α)8 barrel folds (Ray et al., 1999). This chapter establishes that subtilisin nicking and religation is also facile in thermophilic MjTIM. Fragments generated by subtilisin nicking were identified using MALDI mass spectrometry at early and late stages of the cleavage for both the dimeric PfTIM and tetrameric MjTIM. This chapter also describes the comparative thermal and denaturant stability of both the enzymes. The accessibility of the Cys residues of MjTIM has been probed by examining the rates of labeling of thiol groups by iodoacetamide. The differential labeling of Cys residues has been demonstrated by mass spectrometry. Chapter 7 summarizes the main results and conclusions of the studies described in this thesis.
10

Etudes structurales et propriétés enzymatiques de deux nouvelles aminopeptidases TETs auto-compartimentées chez les archées / Structural studies and enzymatic properties of two novel self-assembled aminopeptidases TETs from archaea.

Basbous, Hind 19 December 2016 (has links)
Les aminopeptidases représentent un groupe d’enzymes qui possèdent une fonction cellulaire clef dans les mécanismes physiologiques et pathologiques. Elles interviennent dans la cascade enzymatique après l’action des endoprotéases, dans l’homéostasie au travers le renouvellement du pool d’acides aminés, dans le métabolisme énergétique, la régulation de l’activité des peptides bioactifs, la présentation antigénique ainsi dans une diversité de mécanismes pathologiques tels que les maladies neurologiques et les infections virales et parasitaires. Les aminopeptidases TETs sont capables de former des macro-assemblages tétraédriques comprenant douze sous-unités. En vue de mieux comprendre leur fonction biologique et leur mode d'action, nous avons étudié les propriétés fonctionnelles et structurales de deux nouveaux complexes TETs issus d'archées hyperthermophiles. L'archée hyperthermophile Methanocaldococcus jannaschii ne possède qu'une version de TET (MjTET) qui a été produite dans Escherichia coli et purifiée sous forme de dodécamère. La recherche de son activité enzymatique et de ses substrats peptidiques par des tests chromogéniques et fluorogéniques, ainsi que des études par HPLC en phase inverse, montre que cette enzyme est une leucine aminopeptidase activée par le cobalt se distinguant des autres aminopeptidases M42 par son très large spectre d'action qui s'étend aux résidus aromatiques. Une structure complète de cette aminopeptidase a été résolue en combinant la cristallographie (2.4 Å) et la cryo-EM (4,1 Å). L'analyse de la poche de spécificité de MjTET permet de mieux comprendre les bases structurales de la discrimination de substrat chez les TETs. De plus, l'analyse de la structure interne de la particule permet de proposer un nouveau mécanisme de navigation des peptides à l’intérieur des particules tétraédriques de la famille TET.L'archée hyperthermophile Pyrococcus horikoshii comporte trois types de complexes TETs. L'étude d'une protéine présentant ~20 % d'identité avec ces systèmes, nous a permis d'identifier une quatrième version du système TET dans cet organisme : PhTET4. La protéine recombinante a été purifiée. Elle forme un complexe dodécamérique tétraédrique. Les études biochimiques révèlent que l'enzyme possède une spécificité très étroite dirigée exclusivement vers l'hydrolyse des résidus glycines de l'extrémité N-terminale des peptides. De plus, elle estactivée par le nickel. Ces caractéristiques permettent de proposer que, chez les archées, la multiplication et la spécialisation des enzymes TETs seraient associées au caractère hétérotrophes alors que le système des archées autotrophes se réduirait à une TET unique apte à assurer une fonction de « ménage ». / Aminopeptidases represent a group of enzymes displaying key cellular function inphysiological and pathological mechanisms. They are involved in the enzymatic cascade beyond the action of endoproteases, in homeostasis through the renewal of the amino acid pool, in the energy metabolism, in the regulation of bioactive peptide activities, in the antigen presentation and in a diversity of pathological mechanisms such as neurological diseases as well as viral and parasitic infections. Aminopeptidases TET are able of forming tetrahedral macro-assemblies built by twelve subunits. In order to better understand their biological function and their mode of action, we studied the functional and structural properties of two novel TET complexes derived from hyperthermophilic archaea. The hyperthermophilic archaeon Methanocaldococcus jannaschii has only one version of TET (MjTET) that was produced in Escherichia coli and purified as dodecameric macromolecule. The search for its enzymatic activity and peptide substrates by using chromogenic/fluorogenic assays and reverse phase HPLC studies, demonstrated that this enzyme is a cobalt-activated leucine aminopeptidase, discriminated from other M42 aminopeptidases by its very broad activity spectrum, that extends to aromatic residues. Complete structure of this aminopeptidase was determined by combining X-ray crystallography (2.4 Å) and cryo-electron microscopy (4.1 Å). Analysis of MjTET specificity pocket indicated possible molecular bases for substrate discrimination in TET peptidases. In depth investigation of the particle internal structure allowed to propose a novel peptide trafficking mechanism for the TET family tetrahedral particles. Three types of TET complexes are present in the hyperthermophilic archaea, Pyrococcus horikoshii. The study of an unassigned protein displaying ~20% identity with the PhTETs systems allowed us to identify a fourth version of TET complex in this organism: PhTET4. The recombinant protein was purified. It formed tetrahedral dodecameric complex. Biochemical studies indicated that the enzyme has a very narrow hydrolytic specificity directed exclusively toward the peptide N-terminal glycine residues. In addition, this enzyme is activated by nickel ions. These features allowed proposing that, in archaea, the multiplicity of specialized TET systems could be associated with heterotrophy while unique TET system displaying “housekeeping” function is present in autotrophic organisms.

Page generated in 0.0835 seconds