• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role and Regulation of Methionine Sulfoxide Reductase (Msr) in a model of oxidative stress tolerance: Trachemys scripta

Unknown Date (has links)
The detrimental effects of oxidative stress caused by the accumulation of Reactive Oxygen Species (ROS) have been acknowledged as major factors in aging, senescence and several neurodegenerative diseases and conditions such as Parkinson’s disease and stroke (ischemia/reperfusion). Mammalian models are extremely susceptible to these stresses that follow the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand several bouts of anoxia and repeated reoxygenation without any apparent pathology. T. scripta thus provides us with an alternate vertebrate model in which we can investigate physiological mechanisms of neuroprotection without the damaging effects that come with oxidative stress. The major objective of this study was to investigate the protective mechanisms in the turtle brain under conditions of anoxia and oxidative stress. Specifically, the focus is on the Methionine Sulfoxide Reductase system (Msr), an antioxidant and cellular repair system, and how it is regulated to protect the brain against such stressors. Previous studies in my lab have demonstrated that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation. To investigate the regulation of Msr, FOXO3a was directly induced by transfecting a human FOXO3a plasmid into turtle brain cell cultures, as FOXO3a has been shown to regulate MsrA levels in other animal models. Pharmacological manipulation of FOXO3a was also performed using the green tea extract Epigallocatechin gallate (EGCG) as it has been shown to increase expression of FOXO3a during oxidative stress conditions in other models. I found that an induction of human FOXO3a increased FOXO3a levels and showed protection against cell death during oxidative stress. Furthermore, treatment of cells with EGCG increased expression of FOXO3a only when the cells were exposed to oxidative stress and decreased cell death. Induction of FOXO3a and EGCG treatment did not increase MsrA levels, however MsrB3 levels were upregulated under both treatments but only in the presence of oxidative stress. These results suggest that MsrA and MsrB3 protect the cells from oxidative stress damage through different molecular pathways and that EGCG may be a therapeutic target to treat diseases related to damage by oxidative stress. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
2

Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster

Unknown Date (has links)
The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
3

The Effects of MsrA and MsrB in Anoxia Tolerance in Aging Drosophila melanogaster

Unknown Date (has links)
Drosophila melanogaster tolerates several hours of anoxia (the absence of oxygen) by entering a protective coma. A burst of reactive oxygen species (ROS) is produced when oxygen is reintroduced to the cells. ROS causes oxidative damage to critical cellular molecules, which contribute to aging and development of certain agerelated conditions. The amino acid, methionine, is susceptible to oxidation, although this damage can be reversed by methionine sulfoxide reductases (Msr). This project investigates the effect of Msr-deficiency on anoxia tolerance in Drosophila throughout the lifespan of the animal. The data show that the time for recovery from the protective comma as well as the survival of the animals lacking any Msr activity depends on how quickly the coma is induced by the anoxic conditions. Insight into the roles(s) of Msr genes under anoxic stress can lead us to a path of designing therapeutic drugs around these genes in relation to stroke. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0711 seconds