Spelling suggestions: "subject:"c.method off regularization"" "subject:"c.method off regularizations""
1 |
Asymptotics and computations for approximation of method of regularization estimatorsLee, Sang-Joon 29 August 2005 (has links)
Inverse problems arise in many branches of natural science, medicine and engineering involving the recovery of a whole function given only a finite number of noisy measurements on functionals. Such problems are usually ill-posed, which causes severe difficulties for standard least-squares or maximum likelihood estimation techniques. These problems can be solved by a method of regularization. In this dissertation, we study various problems in the method of regularization. We develop asymptotic properties of the optimal smoothing parameters concerning levels of smoothing for estimating the mean function and an associated inverse function based on Fourier analysis. We present numerical algorithms for an approximated method of regularization estimator computation with linear inequality constraints. New data-driven smoothing parameter selection criteria are proposed in this setting. In addition, we derive a Bayesian credible interval for the approximated method of regularization estimators.
|
2 |
Asymptotics and computations for approximation of method of regularization estimatorsLee, Sang-Joon 29 August 2005 (has links)
Inverse problems arise in many branches of natural science, medicine and engineering involving the recovery of a whole function given only a finite number of noisy measurements on functionals. Such problems are usually ill-posed, which causes severe difficulties for standard least-squares or maximum likelihood estimation techniques. These problems can be solved by a method of regularization. In this dissertation, we study various problems in the method of regularization. We develop asymptotic properties of the optimal smoothing parameters concerning levels of smoothing for estimating the mean function and an associated inverse function based on Fourier analysis. We present numerical algorithms for an approximated method of regularization estimator computation with linear inequality constraints. New data-driven smoothing parameter selection criteria are proposed in this setting. In addition, we derive a Bayesian credible interval for the approximated method of regularization estimators.
|
3 |
Three-dimensional individual and joint inversion of direct current resistivity and electromagnetic dataWeißflog, Julia 07 February 2017 (has links)
The objective of our studies is the combination of electromagnetic and direct current (DC) resistivity methods in a joint inversion approach to improve the reconstruction of a given conductivity distribution. We utilize the distinct sensitivity patterns of different methods to enhance the overall resolution power and ensure a more reliable imaging result.
In order to simplify the work with more than one electromagnetic method and establish a flexible and state-of-the-art software basis, we developed new DC resistivity and electromagnetic forward modeling and inversion codes based on finite elements of second order on unstructured grids. The forward operators are verified using analytical solutions and convergence studies before we apply a regularized Gauss-Newton scheme and successfully invert synthetic data sets. Finally, we link both codes with each other in a joint inversion.
In contrast to most widely used joint inversion strategies, where different data sets are combined in a single least-squares problem resulting in a large system of equations, we introduce a sequential approach that cycles through the different methods iteratively. This way, we avoid several difficulties such as the determination of the full set of regularization parameters or a weighting of the distinct data sets. The sequential approach makes use of a smoothness regularization operator which penalizes the deviation of the model parameters from a given reference model. In our sequential strategy, we use the result of the preceding individual inversion scheme as reference model for the following one. We successfully apply this approach to synthetic data sets and show that the combination of at least two methods yields a significantly improved parameter model compared to the individual inversion results. / Ziel der vorliegenden Arbeit ist die gemeinsame Inversion (\"joint inversion\") elektromagnetischer und geoelektrischer Daten zur Verbesserung des rekonstruierten Leitfähigkeitsmodells. Dabei nutzen wir die verschiedenartigen Sensitivitäten der Methoden aus, um die Auflösung zu erhöhen und ein zuverlässigeres Ergebnis zu erhalten.
Um die Arbeit mit mehr als einer Methode zu vereinfachen und eine flexible Softwarebasis auf dem neuesten Stand der Forschung zu etablieren, wurden zwei Codes zur Modellierung und Inversion geoelektrischer als auch elektromagnetischer Daten neu entwickelt, die mit finiten Elementen zweiter Ordnung auf unstrukturierten Gittern arbeiten. Die Vorwärtsoperatoren werden mithilfe analytischer Lösungen und Konvergenzstudien verifiziert, bevor wir ein regularisiertes Gauß-Newton-Verfahren zur Inversion synthetischer Datensätze anwenden.
Im Gegensatz zur meistgenutzten \"joint inversion\"-Strategie, bei der verschiedene Daten in einem einzigen Minimierungsproblem kombiniert werden, was in einem großen Gleichungssystem resultiert, stellen wir schließlich einen sequentiellen Ansatz vor, der zyklisch durch die einzelnen Methoden iteriert. So vermeiden wir u.a. eine komplizierte Wichtung der verschiedenen Daten und die Bestimmung aller Regularisierungsparameter in einem Schritt. Der sequentielle Ansatz wird über die Anwendung einer Glättungsregularisierung umgesetzt, bei der die Abweichung der Modellparameter zu einem gegebenen Referenzmodell bestraft wird. Wir nutzen das Ergebnis der vorangegangenen Einzelinversion als Referenzmodell für die folgende Inversion. Der Ansatz wird erfolgreich auf synthetische Datensätze angewendet und wir zeigen, dass die Kombination von mehreren Methoden eine erhebliche Verbesserung des
Inversionsergebnisses im Vergleich zu den Einzelinversionen liefert.
|
Page generated in 0.0821 seconds