• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7714
  • 4364
  • 2026
  • 1278
  • 865
  • 760
  • 290
  • 210
  • 197
  • 172
  • 143
  • 142
  • 103
  • 96
  • 93
  • Tagged with
  • 21369
  • 5013
  • 4867
  • 3093
  • 2663
  • 1913
  • 1888
  • 1408
  • 1367
  • 1365
  • 1249
  • 1225
  • 1131
  • 1114
  • 1073
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Stanovení hodnoty podniku pomocí výnosových metod

Příborská, Nela January 2011 (has links)
No description available.
282

Optimization of the assessment of cerebral autoregulation in neurocritical care unit

Liu, Xiuyun January 2017 (has links)
Introduction Cerebral autoregulation (CA) refers to the physiological mechanisms in the brain to maintain constant blood flow despite changes in cerebral perfusion pressure (CPP). It plays an important protective role against the danger of ischaemia or oedema of the brain. Over the years, various methods for CA assessment have been proposed, while most commonly used parameters include the autoregulation index (ARI), which grades CA into ten levels; transfer function (TF) analysis, describing CA as a high pass filter; the mean flow index (Mx), that estimates CA through the correlation coefficient between slow waves of mean cerebral blood flow velocity (CBFV) and CPP; and pressure reactivity index (PRx), calculated as a moving correlation coefficient between mean arterial blood pressure (ABP) and intracranial pressure (ICP). However, until now, how these parameters are related with each other is still not clear. A comprehensive investigation of the relationship between all these parameters is therefore needed. In addition, the methods mentioned above mostly assume the system being analysed is linear and the signals are stationary, with the announcement of non-stationary characteristic of CA, a more robust method, in particular suitable for non-stationary signal analysis, needs to be explored. Objectives and Methods This thesis addresses three primary questions: 1. What are the relationships between currently widely used CA parameters, i.e. Mx, ARI, TF parameters, from theoretical and practical point of view? 2. It there an effective method that can be introduced to assess CA, which is suitable for analyses of non-stationary signals? 3. How can bedside monitoring of cerebral autoregulation be improved in traumatic brain injury patients? These general aims have been translated into a series of experiments, retrospective analyses and background studies that are presented in different chapters of this thesis. Results and Conclusions This PhD project carefully scrutinised currently used CA assessment methodologies in TBI patients, demonstrating significant relationships between ARI, Mx and TF phase. A new introduced wavelet-transform-based method, wPRx was validated and showed more stable result for CA assessment than the well-established parameter, PRx. A multi-window approach with weighting system for optimal CPP estimation was described. The result showed a significant improvement in the continuity and stability of CPPopt estimation, which made it possible to be applied in the future clinical management of TBI patients.
283

A non-gradient heuristic topology optimization approach using bond-based peridynamic theory

Abdelhamid, Ahmed 24 August 2017 (has links)
Peridynamics (PD), a reformulation of the Classical Continuum Mechanics (CCM), is a new and promising meshless and nonlocal computational method in solid mechanics. To permit discontinuities, the PD integro-differential equation contains spatial integrals and time derivatives. PD can be considered as the continuum version of molecular dynamics. This feature of PD makes it a good candidate for multi-scale analysis of materials. Concurrently, the topology optimization has also been rapidly growing in view of the need to design lightweight and high performance structures. Therefore, this thesis presents the potential for a peridynamics-based topology optimization approach. To avoid the gradient calculations, a heuristic topology optimization method is employed. The minimization of the PD strain energy density is set as the objective function. The structure is optimized based on a modified solid isotropic material with a penalization approach and a projection scheme is utilized to obtain distinct results. Several test cases have been studied to analyze the suitability of the proposed method in topology optimization. / Graduate
284

Family of Quantum Sources for Improving Near Field Accuracy in Transducer Modeling by the Distributed Point Source Method

Placko, Dominique, Bore, Thierry, Kundu, Tribikram 18 October 2016 (has links)
The distributed point source method, or DPSM, developed in the last decade has been used for solving various engineering problems-such as elastic and electromagnetic wave propagation, electrostatic, and fluid flow problems. Based on a semi-analytical formulation, the DPSM solution is generally built by superimposing the point source solutions or Green's functions. However, the DPSM solution can be also obtained by superimposing elemental solutions of volume sources having some source density called the equivalent source density (ESD). In earlier works mostly point sources were used. In this paper the DPSM formulation is modified to introduce a new kind of ESD, replacing the classical single point source by a family of point sources that are referred to as quantum sources. The proposed formulation with these quantum sources do not change the dimension of the global matrix to be inverted to solve the problem when compared with the classical point source-based DPSM formulation. To assess the performance of this new formulation, the ultrasonic field generated by a circular planer transducer was compared with the classical DPSM formulation and analytical solution. The results show a significant improvement in the near field computation.
285

Analysis of the influence of device-scale wind field on the sampling efficiency of pollen as a representative bioaerosol / デバイススケールの風力場が生物粒子を代表した花粉のサンプリング効率に与える影響の解析

Miki, Kenji 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22476号 / 農博第2380号 / 新制||農||1074(附属図書館) / 学位論文||R2||N5256(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 中村 公人, 教授 星野 敏, 教授 藤原 正幸 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
286

Technicko-ekonomické srovnání tavného a oxidačního způsobu laserového dělení ocelových plechů pevnolátkovým laserem (ACO) / Techno-economical comparison of the fusing and flame method of laser cutting of steel sheets with a solid-state laser

Vojteková, Lucia January 2018 (has links)
The aim of diploma thesis is a comparison of flame and fusion laser cutting of thin metal sheets for ACO Industries k. s. company, where the experimental part was also realized. After consultation with company, the thesis was extended by data samples, which were cut by compressed air for comparison with other two gases. The optimization design of cutting parameters was created by Taguchi method. Afterwards the surface roughness of samples was measured. Based on Ra and Rz5 parameters, the samples were classified to classes based on their accuracy according to ISO 9013 standard. According to results the fusion method of laser cutting is more suitable method, especially for its good quality of cutting edge, which is not affected by the oxidic layer. Fusion method uses cutting speed two times higher than the flame method, which leads to decrease of time and financial consumption of the process despite of its higher hourly rate. In case of laser cutting of material by compressed air the quality of cut is insufficient in comparison with fusion or flame cutting method.
287

Fast Multipole-Based Elliptic PDE Solver and Preconditioner

Ibeid, Huda 07 December 2016 (has links)
Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. Fast multipole-based solvers and preconditioners are demonstrably poised to play a leading role in exascale computing.
288

Přesné kvantově mechanické výpočty nekovalentních interakcí: Racionalizace rentgenových krystalových geometrií aparátem kvantové chemie / Accurate Quantum Mechanical Calculations on Noncovalent Interactions: Rationalization of X-ray Crystal Geometries by Quantum Chemistry Tools

Hostaš, Jiří January 2017 (has links)
There is a need for reliable rules of thumb for various applications in the area of biochemistry, supramolecular chemistry and material sciences. Simultaneously, the amount of information, which we can gather from X-ray crystal geometries about the nature of recognition processes, is limited. Deeper insight into the noncovalent interactions playing the most important role is needed in order to revise these universal rules governing any recognition process. In this thesis, systematic development and study of the accuracy of the computational chemistry methods followed by their applications in protein DNA and host guest systems, are presented. The non-empirical quantum mechanical tools (DFT-D, MP2.5, CCSD(T) etc. methods) were utilized in several projects. We found and confirmed unique low lying interaction energies distinct from the rest of the distributions in several amino acid−base pairs opening a way toward universal rules governing the selective binding of any DNA sequence. Further, the predictions and examination of changes of Gibbs energies (ΔG) and its subcomponents have been made in several cases and carefully compared with experiments. We determined that the choline (Ch+) guest is bound 2.8 kcal/mol stronger (calculated ΔG) than acetylcholine (ACh+) to self-assembled triple helicate rigid...
289

High-order numerical methods for integral fractional Laplacian: algorithm and analysis

Hao, Zhaopeng 30 April 2020 (has links)
The fractional Laplacian is a promising mathematical tool due to its ability to capture the anomalous diffusion and model the complex physical phenomenon with long-range interaction, such as fractional quantum mechanics, image processing, jump process, etc. One of the important applications of fractional Laplacian is a turbulence intermittency model of fractional Navier-Stokes equation which is derived from Boltzmann's theory. However, the efficient computation of this model on bounded domains is challenging as highly accurate and efficient numerical methods are not yet available. The bottleneck for efficient computation lies in the low accuracy and high computational cost of discretizing the fractional Laplacian operator. Although many state-of-the-art numerical methods have been proposed and some progress has been made for the existing numerical methods to achieve quasi-optimal complexity, some issues are still fully unresolved: i) Due to nonlocal nature of the fractional Laplacian, the implementation of the algorithm is still complicated and the computational cost for preparation of algorithms is still high, e.g., as pointed out by Acosta et al \cite{AcostaBB17} 'Over 99\% of the CPU time is devoted to assembly routine' for finite element method; ii) Due to the intrinsic singularity of the fractional Laplacian, the convergence orders in the literature are still unsatisfactory for many applications including turbulence intermittency simulations. To reduce the complexity and computational cost, we consider two numerical methods, finite difference and spectral method with quasi-linear complexity, which are summarized as follows. We develop spectral Galerkin methods to accurately solve the fractional advection-diffusion-reaction equations and apply the method to fractional Navier-Stokes equations. In spectral methods on a ball, the evaluation of fractional Laplacian operator can be straightforward thanks to the pseudo-eigen relation. For general smooth computational domains, we propose the use of spectral methods enriched by singular functions which characterize the inherent boundary singularity of the fractional Laplacian. We develop a simple and easy-to-implement fractional centered difference approximation to the fractional Laplacian on a uniform mesh using generating functions. The weights or coefficients of the fractional centered formula can be readily computed using the fast Fourier transform. Together with singularity subtraction, we propose high-order finite difference methods without any graded mesh. With the use of the presented results, it may be possible to solve fractional Navier-Stokes equations, fractional quantum Schrodinger equations, and stochastic fractional equations with high accuracy. All numerical simulations will be accompanied by stability and convergence analysis.
290

Lasso for Autoregressive and Moving Average Coeffients via Residuals of Unobservable Time Series

Hanh , Nguyen T. January 2018 (has links)
No description available.

Page generated in 0.2814 seconds