• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement dun formalisme Arbitraire Lagrangien Eulérien tridimensionnel en dynamique implicite. Application aux opérations de mise à forme.

Boman, Romain 01 January 2100 (has links)
Dans le cadre de la simulation de procédés de mise à forme par la méthode des éléments finis, le formalisme Arbitraire Lagrangien Eulérien (ALE) permet de découpler le mouvement du maillage et de la matière. Pour de très grandes déformations, la qualité du maillage peut être ainsi améliorée sans avoir recours à une procédure de remaillage complexe et coûteuse. Un second domaine d'application du formalisme ALE est la simulation de procédés stationnaires pour lesquels le maillage peut rester fixe dans la direction de l'écoulement de matière. Ce type de maillage quasi eulérien permet de diminuer le nombre d'éléments finis du modèle numérique par rapport à une simulation lagrangienne classique. En conséquence, le temps de calcul est également réduit. Bien que le formalisme ALE ne soit pas nouveau, il est rarement utilisé en pratique. D'une part, les techniques de repositionnement de noeuds tridimensionnelles ne sont pas évidentes à mettre en oeuvre et, d'autre part, il n'existe pas de schéma de transfert de données précis adapté aux éléments finis à plus d'un point de Gauss tels que ceux utilisés en dynamique implicite. Cette thèse tente de combler ces deux lacunes: une méthode de repositionnement de noeud sur les surfaces libres du solide est présentée. Elle est très robuste et permet de conserver la forme des surfaces malgré le mouvement arbitraire du maillage. Concernant le transfert des données, un schéma de convection 3D précis au second ordre et utilisable pour des éléments finis à plusieurs points de Gauss est déduit d'un opérateur de projection. L'efficacité et la généralité de l'algorithme ALE qui en résulte sont ensuite démontrées sur une série d'applications de plus en plus complexes: impact d'une barre de Taylor, traction d'une barre d'Hopkinson, double extrusion, laminage, planage et profilage à froid. Dans chaque cas, les résultats ALE sont comparés avec des résultats lagrangiens traditionnels ainsi que des mesures expérimentales lorsque celles-ci sont disponibles.
2

Développement dun formalisme Arbitraire Lagrangien Eulérien tridimensionnel en dynamique implicite. Application aux opérations de mise à forme.

Boman, Romain 06 May 2010 (has links)
Dans le cadre de la simulation de procédés de mise à forme par la méthode des éléments finis, le formalisme Arbitraire Lagrangien Eulérien (ALE) permet de découpler le mouvement du maillage et de la matière. Pour de très grandes déformations, la qualité du maillage peut être ainsi améliorée sans avoir recours à une procédure de remaillage complexe et coûteuse. Un second domaine d'application du formalisme ALE est la simulation de procédés stationnaires pour lesquels le maillage peut rester fixe dans la direction de l'écoulement de matière. Ce type de maillage quasi eulérien permet de diminuer le nombre d'éléments finis du modèle numérique par rapport à une simulation lagrangienne classique. En conséquence, le temps de calcul est également réduit. Bien que le formalisme ALE ne soit pas nouveau, il est rarement utilisé en pratique. D'une part, les techniques de repositionnement de noeuds tridimensionnelles ne sont pas évidentes à mettre en oeuvre et, d'autre part, il n'existe pas de schéma de transfert de données précis adapté aux éléments finis à plus d'un point de Gauss tels que ceux utilisés en dynamique implicite. Cette thèse tente de combler ces deux lacunes: une méthode de repositionnement de noeud sur les surfaces libres du solide est présentée. Elle est très robuste et permet de conserver la forme des surfaces malgré le mouvement arbitraire du maillage. Concernant le transfert des données, un schéma de convection 3D précis au second ordre et utilisable pour des éléments finis à plusieurs points de Gauss est déduit d'un opérateur de projection. L'efficacité et la généralité de l'algorithme ALE qui en résulte sont ensuite démontrées sur une série d'applications de plus en plus complexes: impact d'une barre de Taylor, traction d'une barre d'Hopkinson, double extrusion, laminage, planage et profilage à froid. Dans chaque cas, les résultats ALE sont comparés avec des résultats lagrangiens traditionnels ainsi que des mesures expérimentales lorsque celles-ci sont disponibles.
3

FEM Study of Metal Sheets with a Texture based, Local Description of the Yield Locus

Duchêne, Laurent 10 November 2003 (has links)
Résumé de louvrage La thèse déposée par L. Duchêne comporte cinq chapitres dont une introduction et des conclusions et perspectives et totalise 183 pages. La bibliographie compte 94 références. Louvrage a pour objet la modélisation du comportement mécanique des tôles métalliques (principalement des tôles dacier obtenues par laminage) lors des processus de mise à forme. Lanisotropie de la tôle découle de la mesure de la texture du matériau. Les processus de mise à forme étudiés sont principalement lemboutissage des tôles. Le mémoire propose le développement de deux méthodes locales dinterpolation de la surface de plasticité. Ensuite, ces modèles sont implémentés dans le code éléments finis LAGAMINE, puis validés sur quelques exemples académiques et finalement des applications industrielles sont examinées. Analyse du contenu Le premier chapitre introduit le sujet, définit le cadre dans lequel lauteur situe sa démarche et présente les originalités du travail. Le deuxième chapitre est consacré à la description du comportement microscopique des métaux et des méthodes de transition micro-macro. Le comportement dun monocristal ou plutôt le comportement dun cristal à lintérieur dun polycristal est examiné. Les modèles microscopiques de Taylor et de Bishop-Hill constituant une approche primal-dual pour ce problème sont décrits. Le comportement macroscopique du polycristal est obtenu à partir du comportement microscopique via la transition micro-macro sur base de la texture du matériau. Cette texture est généralement caractérisée par son ODF (Orientation Distribution Function). Cependant, le modèle de transition micro-macro utilisé, basé sur les hypothèses de Taylor, nécessite une description de la texture par un ensemble dorientations cristallines représentatif de la texture du matériau. Différentes méthodes dextraction de lensemble de cristaux représentatif sont décrites. Le nombre de cristaux inclus dans lensemble représentatif est un paramètre important et est discuté. Le comportement élastique et plastique du polycristal sont décrits. Outre le modèle de transition micro-macro basé sur les hypothèses de Taylor, dautres modèles plus récents et plus coûteux en temps de calcul sont décrits. Le deuxième chapitre introduit également lécrouissage du polycristal. Le troisième chapitre présente les étapes successives du développement de lapproche locale de la surface de plasticité. Etant donné que la surface de plasticité est définie dans lespace à 5 dimensions des contraintes déviatoriques, des notions de géométrie dans un espace à n dimensions sont présentées. Différentes propriétés des domaines dans lesquels la surface de plasticité est localement définie sont décrites ; ainsi que la méthode de construction des domaines et le lien entre domaines voisins. Deux méthodes dinterpolation à partir de points calculés via le modèle de Taylor de la surface de plasticité à lintérieur des domaines ont été développées et sont présentées. La méthode de hyperplans définit localement la surface de plasticité au moyen dhyperplans (des plans dans lespace à 5 dimensions des contraintes déviatoriques). La méthode dinterpolation directe contraintes-déformations permet une représentation plus précise et plus continue entre domaines voisins de la surface de plasticité. Etant donné son importance cruciale pour la convergence des simulations numériques utilisant la méthode des éléments finis, la normale à la surface de plasticité est soigneusement examinée pour les deux méthodes locales dinterpolation. Certains problèmes particuliers rencontrés lors du développement et liés à lapproche locale de la surface de plasticité sont présentés pour les deux méthodes dinterpolation. Quelques points particuliers liés à limplémentation de ces méthodes dans le code éléments finis LAGAMINE sont décrits. Le principal intérêt de lapproche locale de la surface de plasticité est son efficacité lors du calcul de lévolution de texture au cours des déformations plastiques. Un paragraphe est dès lors consacré aux détails de calcul des rotations des orientations cristallines et à limplémentation de lévolution de texture dans le code éléments finis. Le chapitre 3 se termine par un paragraphe qui analyse la précision, la robustesse et le gain en temps de calcul (par rapport à lutilisation directe du modèle de Taylor) de lapproche locale de la surface de plasticité. Le quatrième chapitre présente les validations de lapproche locale de la surface de plasticité. Trois validations académiques sont tout dabord effectuées : prédiction de lévolution de texture lors du laminage ; prédiction de leffet Swift en cours de torsion dun tube ou dun cylindre et comparaison du comportement en torsion et compression des métaux cubiques faces centrées et cubiques centrés isotropes. La première validation complexe est lemboutissage de godets circulaires à fond plat. Les résultats des simulations (distribution des déformations plastiques, évolution de la force poinçon en fonction du temps, prédiction des oreilles demboutissage et prédiction de la texture finale) sont comparés aux valeurs expérimentales. La géométrie du processus demboutissage, la mesure des valeurs expérimentales et les paramètres numériques utilisés pour les simulations sont largement détaillés. Linfluence de certains paramètres numériques sur les résultats des simulations est de plus analysée. Une seconde simulation demboutissage avec une autre géométrie et un matériau plus anisotrope est également étudiée. Les oreilles demboutissage sont particulièrement analysées ; le retour élastique dû à un retrait des outils est examiné. Le mémoire se termine par un cinquième chapitre qui présente des perspectives et des conclusions permettant à lauteur de synthétiser les apports de sa thèse et dindiquer quelles directions de recherches lui paraissent devoir être explorées dans le futur.
4

Simulation numérique, à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Application aux structures aéronautiques soumises à impact.

Jeunechamps, Pierre-Paul 10 October 2008 (has links)
La thèse de Monsieur Jeunechamps est intitulée "Simulation numérique, à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Application aux structures aéronautiques soumises à impact". Elle comporte neuf chapitres et deux annexes. La bibliographie compte 285 références. Les développements informatiques ont été implémentés dans le code de calcul par éléments finis Metafor, développé au sein du département LTAS-MC&T et MN²L de l'Université de Liège. Le travail est divisé en trois parties principales. La première partie (chapitres 2 à 4) concerne la description et la modélisation thermomécanique des phénomènes à dynamique rapide sans dégradation irréversible des propriétés du matériau utilisé. La deuxième partie (chapitres 5 à 7) est consacrée à l'étude du comportement des matériaux dits endommageables éventuellement soumis à rupture, c'est-à-dire des matériaux dont les propriétés se dégradent de façon irréversible au cours de la déformation. La troisième partie (chapitre 8) est une application à l'échelle industrielle des méthodes proposées tout au long de cet ouvrage. Le chapitre 2 propose un inventaire des lois constitutives des matériaux, permettant de décrire le comportement de la structure lors de sollicitations rapides. L'accent est mis sur les principales lois d'évolution de la limite élastique implémentées dans les codes de calcul commerciaux, ainsi que sur les variantes de ces lois d'évolution. L'aspect numérique de l'intégration thermomécanique de ces lois est également abordé. Le deuxième aspect abordé dans cette première partie concerne les algorithmes d'intégration temporelle des équations de conservation de la quantité de mouvement. Le chapitre 3 décrit les algorithmes d'intégration utilisés dans ce travail, en mettant l'accent sur l'aspect dynamique et le couplage thermomécanique des phénomènes à dynamique rapide. Le chapitre 4 présente quelques applications illustrant les méthodes de calcul utilisées et permettant la validation de l'implémentation des modèles programmés dans Metafor. Les comparaisons sont effectuées dans la mesure du possible par rapport à des données expérimentales quand celles-ci sont disponibles et également par rapport à des résultats issus de codes de calcul commerciaux. Le chapitre 5 présente une modélisation de la dégradation du matériau au cours de la déformation. En effet, le matériau, sous l'effet des sollicitations et des efforts résultants, perd de ses propriétés de résistance à l'effort, et ce, de manière irréversible. Il est alors endommagé. Dans ce travail, nous avons choisi d'utiliser la théorie de l'endommagement continu pour décrire ces phénomènes. Le chapitre 5 rappelle les fondements de cette théorie ainsi que les principales lois d'endommagement continu. Une méthode générale et originale d'intégration de ces modèles d'endommagement est également proposée. Une fois que la structure est soumise à de trop fortes sollicitations, la rupture consécutive à l'endommagement du matériau apparaît. Le chapitre 6 décrit la méthode numérique développée pour modéliser le déchirement d'une structure ainsi que les différents critères de rupture utilisés. Encore une fois, nous nous limitons à une approche phénoménologique et pragmatique : il ne s'agit pas ici d'implémenter des critères complexes multi-échelles. Cependant, la structure du code de calcul est conçue pour permettre aisément de telles extensions. Le chapitre 7 présente une série d'applications permettant de valider l'implémentation des lois d'endommagement et de rupture ainsi que la formulation proposée de la théorie d'endommagement. Nous étudierons également le coût CPU engendré par la modélisation de l'endommagement et de la rupture du matériau. Enfin, le chapitre 8 présente une application industrielle proposée par la société Techspace Aero S.A. Il s'agit de l'étude du flambement d'une aube de compresseur basse pression d'un moteur d'avion lors du contact accidentel de celle-ci avec le carter du moteur. Tous les développements présentés dans les chapitres précédents sont alors utilisés pour simuler au mieux le phénomène. Les apports principaux du travail sont les suivants : utilisation d'algorithmes thermomécaniques de type étagé, dont l'intégration temporelle des équations de conservation du mouvement prend en compte les effets d'inertie ; amélioration de la technique d'intégration des lois constitutives avec endommagement, utilisant la théorie de l'endommagement continu, par l'utilisation d'un algorithme itératif ; méthode unifiée de calcul de la matrice de raideur tangente matérielle analytique pour un matériau hypoélastique avec endommagement, selon la théorie de l'endommagement continu, dans le cadre thermomécanique ; couplage thermomécanique général des modèles d'endommagement et des lois constitutives à grandes vitesses de déformation ; utilisation d'algorithmes implicites thermomécaniques dans la modélisation de la déchirure de structure par la méthode d'érosion ; établissement d'une plate-forme numérique d'accueil permettant l'implémentation future de lois matérielles, avec ou sans endommagement, ainsi que de techniques de modélisation de propagation de fissure ; processus complet de description d'un phénomène d'impact, par la modélisation du comportement thermomécanique du matériau par des lois de comportement avec endommagement adaptées au phénomène étudié et l'utilisation d'algorithmes implicites couplés à une méthode de déchirure de la structure.
5

Numerical Simulations of the Single Point Incremental Forming Process

Henrard, Christophe 13 February 2009 (has links)
1. Scope of the Study<BR> ---------------------<BR> In the modern engineering world, technological advancements drive the product design process. Increasingly powerful CAD programs make more complex product designs possible, which in turn boost the demand for more complex prototypes. At the same time, fast-moving competitive markets require frequent design changes, shorter lead times, and tighter budgets. In short, prototyping must be faster, better, and less expensive.<BR> <BR> Within this context, rapid prototyping in sheet metal is highly desirable because the manufacturing of functional prototypes speeds up the time to market. While the market is well developed when it comes to rapid prototyping for plastic parts, the options for prototyping geometrically complicated sheet metal components are more limited and extremely expensive, because all the methods available require expensive tooling, machinery or manual labor.<BR> <BR> Unlike many other sheet metal forming processes, incremental forming does not require any dedicated dies or punches to form a complex shape. Instead, the process uses a standard smooth-end tool, the diameter of which is far smaller than the part being made, mounted on a three-axis CNC milling machine.<BR> <BR> The sheet metal blank is clamped around its edges using a blank-holder. During the forming process, the tool moves along a succession of contours, which follow the final geometry of the part, and deforms the sheet into its desired shape incrementally.<BR> <BR> 2. Context of the Research<BR> --------------------------<BR> The work presented in this thesis was started in October 2003 in the framework of the SeMPeR project (Sheet Metal oriented Prototyping and Rapid manufacturing). This was a four-year-long project, whose purpose was to develop a research platform that would support an in-depth analysis of the incremental forming and laser forming processes. This platform supported experimental, numerical, and analytical research activities, the interaction between which was expected to lead to the design of new and improved process variants and the identification of effective process planning and control strategies.<BR> <BR> Four research partners from three different universities were involved in the project, covering the various academic disciplines required. As project leader, the PMA Department of the Catholic University of Leuven (KUL) provided extensive background knowledge in numerically controlled sheet metal forming processes, as well as long-term experience of experimental hardware development and process planning. This department was in charge of the experimental study of the processes. The MTM Department from the same university studied the processes in detail using accurate finite element models. The MEMC Department of the Free University of Brussels (VUB) provided expertise in in-process strain and displacement measurement, and material characterization by means of inverse method techniques. Finally, the ArGEnCo Department of the University of Liège (ULg), to which the present author is affiliated, undertook the task of developing a finite element code adapted to the incremental forming process.<BR> <BR> Because of its promising outcome, the project held wide industrial interest: several companies assisted in ensuring the ultimate industrial relevance of the research and provided logistical support in terms of hardware, materials, and specific data.<BR> <BR> 3. Objective of the Thesis<BR> --------------------------<BR> Although the SeMPeR project aimed at studying two rapid prototyping processes, the present work focused only on one of those: incremental forming. The goal of the team at the University of Liège was to adapt a department-made finite element code, Lagamine, to the incremental forming process. In particular, the computation time had to be reduced as much as possible while maintaining a sufficient level of accuracy.<BR> <BR> 4. Outline of the Thesis<BR> ------------------------<BR> The body of the text is divided into three parts.<BR> <BR> The first part contains two chapters. The first of these provides a literature review in the field of incremental forming. More specifically, it introduces the process, presents an overview of its practical implementation and experimental setup requirements, and shows its benefits and limitations. Then, the chapter focuses on the latest developments in terms of finite element modeling and analytical computations.<BR> <BR> The second chapter presents the numerical tools used throughout this research. This consists mainly of the finite element code, the elements, and the constitutive laws. Then, this chapter gives an overview of the experimental setup and measuring devices used during the experimental tests performed in Leuven. The second part focuses on dynamic explicit simulations of incremental forming and contains four chapters. The first justifies the use of a dynamic explicit strategy. The second presents the new features added to the finite element code in order to be able to model incremental forming with such a strategy. The third explains the computation of the mass matrix of the shell element used throughout this part of the thesis and justifies this computation. Finally, the fourth chapter analyzes the overall performance of the dynamic explicit simulations both in terms of accuracy and computation time.<BR> <BR> The third part of this thesis contains an in-depth analysis of the incremental forming process using more classic implicit finite element simulations. This analysis is performed in two steps. In a first chapter, the influence of using a partial mesh for the simulations is evaluated in terms of accuracy and computation time. Then, in a second and final chapter, a detailed analysis of the deformation mechanism occurring during this forming process is carried out.<BR> <BR> Finally, this thesis ends with the major conclusions drawn from the research and perspectives on possible means of further improving the simulation tool.<BR> <BR> 5. Original Contributions<BR> -------------------------<BR> Through this research, several major contributions were achieved.<BR> <BR> First, a comprehensive literature review of the incremental forming process was carried out. In particular, the review focused on original articles concerning the limitations of the process and possible ways of bypassing them; on the most recent explanations for the increased formability observed during the process; and on the state of the art in finite element simulations of incremental forming. Understanding the concepts and difficulties inherent in these publications was made possible particularly by the SeMPeR project thanks to the discussions held and the monthly follow-ups on research performed by its members.<BR> <BR> Secondly, Lagamine's shell element was corrected and its mass matrix modified to enable its use with an explicit strategy. Following this, a new approach for modeling the contact between an element and the forming tool during simulations in a dynamic explicit strategy was developed and thoroughly tested. A detailed comparison of the influence of various finite element parameters on the simulations' results was performed, in particular regarding the choice between using the implicit and explicit strategies and the use of mass scaling to reduce the computation time.<BR> <BR> In addition, many simulations were validated thanks to experimental results.<BR> <BR> Moreover, the computation time required for simulations of the forming of parts with rotational symmetry was radically reduced by using a partial model with a new type of boundary conditions.<BR> <BR> Finally, the material behavior occurring during incremental forming was analyzed.
6

Méthode de Perturbation pour la Modélisation par Éléments Finis des Systèmes Électrostatiques en Mouvement - Application aux MEMS Électrostatiques

Boutaayamou, Mohamed 05 March 2009 (has links)
La modélisation par éléments finis des conducteurs en mouvement nécessite généralement des calculs successifs et le remalliage de certaines régions. Une modélisation 3D de géométries complexes par les techniques classiques nécessite dès lors de gros efforts en terme de temps de calcul. Dans cette thèse, une méthode originale basée sur une approche par sous-problèmes, appelée méthode de perturbation, a été développée. Utilisant la méthode des éléments finis, cette technique consiste à subdiviser un problème entier en sous-problèmes. La complexité du problème initial est par conséquent diminuée en ne se concentrant que sur les zones les plus pertinentes. Appliquée aux systèmes en mouvement, la méthode de perturbation permet d'exploiter les résolutions antérieures au lieu d'effectuer un nouveau calcul pour chaque position. L'analyse par la méthode de perturbation des microsystèmes électromécaniques (MEMS) électrostatiques comprenant des parties en déplacement ou en déformation est en outre considérée dans ce travail. Il est notamment question de démontrer l'implication naturelle de cette approche pour des simulations plus efficaces et plus précises des MEMS électrostatiques.
7

Semi-solid constitutive modeling for the numerical simulation of thixoforming processes.

Koeune, Roxane 14 June 2011 (has links)
Semi-solid thixoforming processes rely on a material microstructure made of globular solid grains more or less connected to each other, thus developing a solid skeleton deforming into a liquid phase. During processing, the material structure changes with the processing history due to the agglomeration of the particles and the breaking of the grains bonds. This particular evolutive microstructure makes semi-solid materials behave as solids at rest and as liquids during shearing, which causes a decrease of the viscosity and of the resistance to deformation while shearing. Thixoforming of aluminum and magnesium alloys is state of the art and a growing number of serial production lines are in operation all over the world. But there are only few applications of semi-solid processing of higher melting point alloys such as steel. This can partly be attributed to the high forming temperature combined with the intense high temperature corrosion that requires new technical solutions. However the semi-solid forming of steels reveals high potential to reduce material as well as energy consumption compared to conventional process technologies, such as casting and forging. Simulation techniques exhibit a great potential to acquire a good understanding of the semi-solid material process. Therefore, this work deals with the development of an appropriate constitutive model for semi-solid thixoforming of steel. The constitutive law should be able to simulate the complex rheology of semi-solid materials, under both steady-state and transient conditions. For example, the peak of viscosity at start of a fast loading should be reproduced. The use of a finite yield stress is appropriate because a vertical billet does not collapse under its own weight unless the liquid fraction is too high. Furthermore, this choice along with a non-rigid solid formalism allows predicting the residual stresses after cooling down to room temperature. Several one-phase material modeling have been proposed and are compared. Thermo-mechanical modeling using a thermo-elasto-viscoplastic constitutive law has been developed. The basic idea is to extend the classical isotropic hardening and viscosity laws to the non solid state by considering two non-dimensional internal parameters. The first internal parameter is the liquid fraction and depends on the temperature only. The second one is a structural parameter that characterizes the degree of structural build up in the microstructure. Those internal parameters can depend on each other. The internal parameters act on the the viscosity law and on the yield surface evolution law. Different formulations of viscosity and hardening laws have been proposed and are compared to each other. In all cases, the semi-solid state is treated as a particular case, and the constitutive modeling remains valid over the whole range of temperature, starting from room temperature to above the liquidus. These models are tested and illustrated by mean of several representative numerical applications.
8

Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements / Modélisation de la propagation des ondes sismiques : une méthode multipôle rapide (éléments de frontière) et son couplage avec la méthode des éléments finis

Grasso, Eva 13 June 2012 (has links)
La simulation numérique de la propagation d'ondes sismiques est un besoin actuel, par exemple pour modéliser les vibrations induites dans les sols par le trafic ferroviaire ou pour analyser la propagation d'ondes sismiques ou l'interaction sol-structure. La modélisation de ce type de problèmes est complexe et nécessite l'utilisation de méthodes numériques avancées. La méthode des éléments de frontière (boundary element method, BEM) est une méthode très efficace pour la solution de problèmes de dynamique dans des régions étendues (idéalisées comme non-bornées), en particulier après le développement des méthodes BEM accélérées par multipôle rapide (Fast Multipole Method, FMM), la méthode utilisée dans ce travail de thèse. La BEM est basée sur une formulation intégrale qui nécessite de discrétiser uniquement la frontière du domaine (i.e. une surface en 3-D) et prend implicitement en compte les conditions de radiation à l'infini. En revanche, la BEM nécessite la résolution d'un système linéaire dont la matrice est pleine et (pour la formulation par collocation de la BEM) non-symétrique. Cette méthode est donc trop onéreuse pour des problèmes de grandes dimensions (par exemple O(106) DDLs). L'application à la BEM de la méthode multipôle rapide multi-niveaux (multi-level fast multipole method, ou ML-FMM diminue considérablement la complexité et les besoins de mémoire affectant les formulations BEM classiques, rendant la BEM très compétitive pour modéliser la propagation des ondes élastiques. La version élastodynamique de la ML-FMBEM, dans une forme étendue aux domaines homogènes par morceaux, a par exemple été appliquée avec succès dans un travail précédent (thèse S. Chaillat, ENPC, 2008) pour résoudre les problèmes de propagation des ondes sismiques. Cette thèse vise a développer les capacités de la version élastodynamique fréquentielle de la ML-FMBEM dans deux directions. Premièrement, la formulation de la ML-FMBEM a été étendue au cas de matériaux viscoélastiques linéaires faiblement dissipatifs. Deuxièmement, la ML-FMBEM et la méthode des éléments finis (finite element method, FEM) ont été couplées afin de permettre la résolution de problèmes plus compliqués. En effet, le couplage FEM/FMBEM permet de profiter d'un côté de la flexibilité de la FEM pour la modélisation de structures de géométrie complexe ou présentant des non-linéarités de comportement, de l'autre côté de la prise en compte naturelle par la ML-FMBEM des ondes se propageant dans un milieu étendu et rayonnant à l'infini. De nouvelles perspectives d'application (par exemple prise en compte d'hétérogénéités, non-linéarités de comportement) sont ainsi ouvertes. Dans cette thèse, nous avons considéré deux stratégies pour coupler la FMBEM et la FEM avec l'objectif de résoudre les problèmes tridimensionnels de propagation des ondes harmoniques dans le temps et dans des domaines non-bornés. L'idée principale consiste à séparer une ou plusieurs sous-régions pouvant contenir des structures complexes, de fortes hétérogénéités ou des non-linéarités (modélisées au moyen de la FEM) du milieu propagatif complémentaire semi-infini et (visco-) élastique (modélisé au moyen de la FMBEM). Cette séparation est effectuée au moyen d'une décomposition de domaines sans recouvrement. Le deux approches proposées ont été mises en oeuvre, et une série d'expérimentations numériques a été effectuée pour les évaluer et les comparer / The numerical simulation of elastic wave propagation in unbounded media is a topical issue. This need arises in a variety of real life engineering problems, from the modelling of railway- or machinery-induced vibrations to the analysis of seismic wave propagation and soil-structure interaction problems. Due to the complexity of the involved geometries and materials behavior, modelling such situations requires sophisticated numerical methods. The Boundary Element method (BEM) is a very effective approach for dynamical problems in spatially-extended regions (idealized as unbounded), especially since the advent of fast BEMs such as the Fast Multipole Method (FMM) used in this work. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and (using the collocation approach) non-symmetrical coefficient matrix, which make the traditional implementation of this method prohibitive for large problems (say O(106) boundary DoFs). Applied to the BEM, the Multi-Level Fast Multipole Method (ML-FMM) strongly lowers the complexity in computational work and memory that hinder the classical formulation, making the ML-FMBEM very competitive in modelling elastic wave propagation. The elastodynamic version of the Fast Multipole BEM (FMBEM), in a form enabling piecewise-homogeneous media, has for instance been successfully used to solve seismic wave propagation problems in a previous work (thesis dissertation of S. Chaillat, ENPC, 2008). This thesis aims at extending the capabilities of the existing frequency-domain elastodynamic FMBEM in two directions. Firstly, the time-harmonic elastodynamic ML-FMBEM formulation has been extended to the case of weakly dissipative viscoelastic media. Secondly, the FMBEM and the Finite Element Method (FEM) have been coupled to take advantage of the versatility of the FEM to model complex geometries and non-linearities while the FM-BEM accounts for wave propagation in the surrounding unbounded medium. In this thesis, we consider two strategies for coupling the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation problems in unbounded domains. The main idea is to separate one or more bounded subdomains (modelled by the FEM) from the complementary semi-infinite viscoelastic propagation medium (modelled by the FMBEM) through a non-overlapping domain decomposition. Two coupling strategies have been implemented and their performances assessed and compared on several examples

Page generated in 0.141 seconds