• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bridging the Gap Between H-Matrices and Sparse Direct Methods for the Solution of Large Linear Systems / Combler l’écart entre H-Matrices et méthodes directes creuses pour la résolution de systèmes linéaires de grandes tailles

Falco, Aurélien 24 June 2019 (has links)
De nombreux phénomènes physiques peuvent être étudiés au moyen de modélisations et de simulations numériques, courantes dans les applications scientifiques. Pour être calculable sur un ordinateur, des techniques de discrétisation appropriées doivent être considérées, conduisant souvent à un ensemble d’équations linéaires dont les caractéristiques dépendent des techniques de discrétisation. D’un côté, la méthode des éléments finis conduit généralement à des systèmes linéaires creux, tandis que les méthodes des éléments finis de frontière conduisent à des systèmes linéaires denses. La taille des systèmes linéaires en découlant dépend du domaine où le phénomène physique étudié se produit et tend à devenir de plus en plus grand à mesure que les performances des infrastructures informatiques augmentent. Pour des raisons de robustesse numérique, les techniques de solution basées sur la factorisation de la matrice associée au système linéaire sont la méthode de choix utilisée lorsqu’elle est abordable. A cet égard, les méthodes hiérarchiques basées sur de la compression de rang faible ont permis une importante réduction des ressources de calcul nécessaires pour la résolution de systèmes linéaires denses au cours des deux dernières décennies. Pour les systèmes linéaires creux, leur utilisation reste un défi qui a été étudié à la fois par la communauté des matrices hiérarchiques et la communauté des matrices creuses. D’une part, la communauté des matrices hiérarchiques a d’abord exploité la structure creuse du problème via l’utilisation de la dissection emboitée. Bien que cette approche bénéficie de la structure hiérarchique qui en résulte, elle n’est pas aussi efficace que les solveurs creux en ce qui concerne l’exploitation des zéros et la séparation structurelle des zéros et des non-zéros. D’autre part, la factorisation creuse est accomplie de telle sorte qu’elle aboutit à une séquence d’opérations plus petites et denses, ce qui incite les solveurs à utiliser cette propriété et à exploiter les techniques de compression des méthodes hiérarchiques afin de réduire le coût de calcul de ces opérations élémentaires. Néanmoins, la structure hiérarchique globale peut être perdue si la compression des méthodes hiérarchiques n’est utilisée que localement sur des sous-matrices denses. Nous passons en revue ici les principales techniques employées par ces deux communautés, en essayant de mettre en évidence leurs propriétés communes et leurs limites respectives, en mettant l’accent sur les études qui visent à combler l’écart qui les séparent. Partant de ces observations, nous proposons une classe d’algorithmes hiérarchiques basés sur l’analyse symbolique de la structure des facteurs d’une matrice creuse. Ces algorithmes s’appuient sur une information symbolique pour grouper les inconnues entre elles et construire une structure hiérarchique cohérente avec la disposition des non-zéros de la matrice. Nos méthodes s’appuient également sur la compression de rang faible pour réduire la consommation mémoire des sous-matrices les plus grandes ainsi que le temps que met le solveur à trouver une solution. Nous comparons également des techniques de renumérotation se fondant sur des propriétés géométriques ou topologiques. Enfin, nous ouvrons la discussion à un couplage entre la méthode des éléments finis et la méthode des éléments finis de frontière dans un cadre logiciel unique. / Many physical phenomena may be studied through modeling and numerical simulations, commonplace in scientific applications. To be tractable on a computer, appropriated discretization techniques must be considered, which often lead to a set of linear equations whose features depend on the discretization techniques. Among them, the Finite Element Method usually leads to sparse linear systems whereas the Boundary Element Method leads to dense linear systems. The size of the resulting linear systems depends on the domain where the studied physical phenomenon develops and tends to become larger and larger as the performance of the computer facilities increases. For the sake of numerical robustness, the solution techniques based on the factorization of the matrix associated with the linear system are the methods of choice when affordable. In that respect, hierarchical methods based on low-rank compression have allowed a drastic reduction of the computational requirements for the solution of dense linear systems over the last two decades. For sparse linear systems, their application remains a challenge which has been studied by both the community of hierarchical matrices and the community of sparse matrices. On the one hand, the first step taken by the community of hierarchical matrices most often takes advantage of the sparsity of the problem through the use of nested dissection. While this approach benefits from the hierarchical structure, it is not, however, as efficient as sparse solvers regarding the exploitation of zeros and the structural separation of zeros from non-zeros. On the other hand, sparse factorization is organized so as to lead to a sequence of smaller dense operations, enticing sparse solvers to use this property and exploit compression techniques from hierarchical methods in order to reduce the computational cost of these elementary operations. Nonetheless, the globally hierarchical structure may be lost if the compression of hierarchical methods is used only locally on dense submatrices. We here review the main techniques that have been employed by both those communities, trying to highlight their common properties and their respective limits with a special emphasis on studies that have aimed to bridge the gap between them. With these observations in mind, we propose a class of hierarchical algorithms based on the symbolic analysis of the structure of the factors of a sparse matrix. These algorithms rely on a symbolic information to cluster and construct a hierarchical structure coherent with the non-zero pattern of the matrix. Moreover, the resulting hierarchical matrix relies on low-rank compression for the reduction of the memory consumption of large submatrices as well as the time to solution of the solver. We also compare multiple ordering techniques based on geometrical or topological properties. Finally, we open the discussion to a coupling between the Finite Element Method and the Boundary Element Method in a unified computational framework.
2

Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements / Modélisation de la propagation des ondes sismiques : une méthode multipôle rapide (éléments de frontière) et son couplage avec la méthode des éléments finis

Grasso, Eva 13 June 2012 (has links)
La simulation numérique de la propagation d'ondes sismiques est un besoin actuel, par exemple pour modéliser les vibrations induites dans les sols par le trafic ferroviaire ou pour analyser la propagation d'ondes sismiques ou l'interaction sol-structure. La modélisation de ce type de problèmes est complexe et nécessite l'utilisation de méthodes numériques avancées. La méthode des éléments de frontière (boundary element method, BEM) est une méthode très efficace pour la solution de problèmes de dynamique dans des régions étendues (idéalisées comme non-bornées), en particulier après le développement des méthodes BEM accélérées par multipôle rapide (Fast Multipole Method, FMM), la méthode utilisée dans ce travail de thèse. La BEM est basée sur une formulation intégrale qui nécessite de discrétiser uniquement la frontière du domaine (i.e. une surface en 3-D) et prend implicitement en compte les conditions de radiation à l'infini. En revanche, la BEM nécessite la résolution d'un système linéaire dont la matrice est pleine et (pour la formulation par collocation de la BEM) non-symétrique. Cette méthode est donc trop onéreuse pour des problèmes de grandes dimensions (par exemple O(106) DDLs). L'application à la BEM de la méthode multipôle rapide multi-niveaux (multi-level fast multipole method, ou ML-FMM diminue considérablement la complexité et les besoins de mémoire affectant les formulations BEM classiques, rendant la BEM très compétitive pour modéliser la propagation des ondes élastiques. La version élastodynamique de la ML-FMBEM, dans une forme étendue aux domaines homogènes par morceaux, a par exemple été appliquée avec succès dans un travail précédent (thèse S. Chaillat, ENPC, 2008) pour résoudre les problèmes de propagation des ondes sismiques. Cette thèse vise a développer les capacités de la version élastodynamique fréquentielle de la ML-FMBEM dans deux directions. Premièrement, la formulation de la ML-FMBEM a été étendue au cas de matériaux viscoélastiques linéaires faiblement dissipatifs. Deuxièmement, la ML-FMBEM et la méthode des éléments finis (finite element method, FEM) ont été couplées afin de permettre la résolution de problèmes plus compliqués. En effet, le couplage FEM/FMBEM permet de profiter d'un côté de la flexibilité de la FEM pour la modélisation de structures de géométrie complexe ou présentant des non-linéarités de comportement, de l'autre côté de la prise en compte naturelle par la ML-FMBEM des ondes se propageant dans un milieu étendu et rayonnant à l'infini. De nouvelles perspectives d'application (par exemple prise en compte d'hétérogénéités, non-linéarités de comportement) sont ainsi ouvertes. Dans cette thèse, nous avons considéré deux stratégies pour coupler la FMBEM et la FEM avec l'objectif de résoudre les problèmes tridimensionnels de propagation des ondes harmoniques dans le temps et dans des domaines non-bornés. L'idée principale consiste à séparer une ou plusieurs sous-régions pouvant contenir des structures complexes, de fortes hétérogénéités ou des non-linéarités (modélisées au moyen de la FEM) du milieu propagatif complémentaire semi-infini et (visco-) élastique (modélisé au moyen de la FMBEM). Cette séparation est effectuée au moyen d'une décomposition de domaines sans recouvrement. Le deux approches proposées ont été mises en oeuvre, et une série d'expérimentations numériques a été effectuée pour les évaluer et les comparer / The numerical simulation of elastic wave propagation in unbounded media is a topical issue. This need arises in a variety of real life engineering problems, from the modelling of railway- or machinery-induced vibrations to the analysis of seismic wave propagation and soil-structure interaction problems. Due to the complexity of the involved geometries and materials behavior, modelling such situations requires sophisticated numerical methods. The Boundary Element method (BEM) is a very effective approach for dynamical problems in spatially-extended regions (idealized as unbounded), especially since the advent of fast BEMs such as the Fast Multipole Method (FMM) used in this work. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and (using the collocation approach) non-symmetrical coefficient matrix, which make the traditional implementation of this method prohibitive for large problems (say O(106) boundary DoFs). Applied to the BEM, the Multi-Level Fast Multipole Method (ML-FMM) strongly lowers the complexity in computational work and memory that hinder the classical formulation, making the ML-FMBEM very competitive in modelling elastic wave propagation. The elastodynamic version of the Fast Multipole BEM (FMBEM), in a form enabling piecewise-homogeneous media, has for instance been successfully used to solve seismic wave propagation problems in a previous work (thesis dissertation of S. Chaillat, ENPC, 2008). This thesis aims at extending the capabilities of the existing frequency-domain elastodynamic FMBEM in two directions. Firstly, the time-harmonic elastodynamic ML-FMBEM formulation has been extended to the case of weakly dissipative viscoelastic media. Secondly, the FMBEM and the Finite Element Method (FEM) have been coupled to take advantage of the versatility of the FEM to model complex geometries and non-linearities while the FM-BEM accounts for wave propagation in the surrounding unbounded medium. In this thesis, we consider two strategies for coupling the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation problems in unbounded domains. The main idea is to separate one or more bounded subdomains (modelled by the FEM) from the complementary semi-infinite viscoelastic propagation medium (modelled by the FMBEM) through a non-overlapping domain decomposition. Two coupling strategies have been implemented and their performances assessed and compared on several examples

Page generated in 0.0603 seconds