Spelling suggestions: "subject:"ethodology off analysis"" "subject:"ethodology oof analysis""
1 |
Developing a methodological geographic information system framework to augment identification of future risk of anomalous dwelling firesDean, Emma January 2015 (has links)
This thesis outlines research completed in partnership between Merseyside Fire and Rescue Service and Liverpool John Moores University. The aim of the research was to investigate ways to develop and implement a bespoke Geographic Information System framework that could be used to identify risk of future anomalous accidental dwelling fires. This thesis outlines the techniques used to develop the framework and its application. In particular, the thesis presents an understanding of accidental dwelling fire causal factors and how data related to these can be incorporated into a model for identifying risk and targeting initiatives relative to the risk. The thesis also investigates two strands of customer insight developed for Merseyside Fire and Rescue Service. These are community profiles, based on a cluster analysis approach, to understand risks present within communities and the vulnerable person index, which identifies individuals most at risk from fire using data shared through information sharing agreements. Nationally recognised risk modelling toolkits, such as the Fire Service Emergency Cover toolkit do not utilise local information or have the ability to identify risk to an individual level. There is a need for this intelligence to be able to proactively target services, such as the Home Fire Safety Check. This paper also discusses some of the key operational and strategic areas that benefit from this information and presents some case studies related to the application of the research.
|
2 |
Identifikácia, analýza a návrh riešení problémov spolupráce vybraných firiem / The identification, analysis and problem solution proposals in the cooperation of the chosen organizationsChovanová, Katarína January 2015 (has links)
The focus of this thesis is an identification and analysis of problems which have occurred till now in the cooperation between two chosen organizations, followed by problem solution proposals. Methodology of two sociologists Charles H. Kepner and Benjamin B. Tregoe will be used to undertake this analysis. The thesis is divided in two parts, theoretical and practical. The aim of the theoretical part is to define the various concepts that will be used in this work, such as the Kepner-Tregoe methodology or definition of a problem. The practical part is oriented on the analysis of the cooperation of the chosen organizations and the problems that have occurred with the use of the mentioned methodology. The purpose of the thesis is to propose possible solutions and chose the most appropriate.
|
3 |
PRODUÇÃO DE BIOBUTANOL A PARTIR DE SORGO SACARÍNEO POR MEIO DE PROCESSOS BIOTECNOLÓGICOS / BIOBUTANOL PRODUCTION FROM SWEET SORGUM BY MEANS OF BIOTECHNOLOGICAL PROCESSESVisioli, Luiz Jardel 17 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The biobutanol production by fermentative process has a great importance to increase the
global supply of biofuel and becomes these able to replace the use of fossil fuel. The main
difficulty associated to this production occurs due the not economic viability of applied
production process. The aspects that have more contribution to this are the product inhibition
at low concentration, low titer and the use of expensive substrates. This work is divided in
four scientific articles which are focused in question involved to this solvent production. The
first two are review papers about the topic, whereas the last two are research papers related to
development of analytical methods and production process. The first paper reports to the main
process development since 1980 year, by analyses of registered patents in relation to butanol
production worldwide. The second paper presents a review from scientific articles about
butyric fermentation published in recent years. The central characteristic of it is show the
main troubles related to production, exhibiting the importance of the used substrate, as well as
the choice of microorganism and separation process. Third paper presents a methodology to
solvents determination from fermentation medium. This technique proposes a linear
relationship between the density variation, sugar and solvents concentrations. The method
proposed showed good results being promising to predict the ABE concentration in an easy
and fast procedure. Fourth paper reports the development of the process to production of
biobutanol by clostridial fermentation from sweet sorghum juice. Butanol is produced from
substrate and small addition of yeast extract and tryptone, using 12.5% of initial inoculums
size, at initial pH pH value equal to 5.5. In this work was demonstrated the possibility to
produce biobutanol from sweet sorghum. / A produção de butanol a partir de processos fermentativos é de fundamental importância para
aumentar a oferta mundial de biocombustíveis e permitir que estes substituam o uso de
combustíveis fósseis. A principal dificuldade em relação a esta produção ocorre devido a não
viabilidade econômica dos processos de produção aplicados. Os aspectos que mais
contribuem para isto são a inibição pelo produto a baixas concentrações, baixa produtividade
e uso de substratos caros. Este trabalho está dividido em quatro artigos científicos que estão
voltados a questões envolvidas com a produção deste biocombustível. Os dois primeiros
fazem uma revisão da literatura científica sobre o tópico, já os últimos são trabalhos
científicos de desenvolvimento de metodologias e processos. O artigo 1 traz um ponto de
vista em relação ao desenvolvimento do processo, desde o ano de 1980, através da análise das
patentes registradas sobre produção de butanol no mundo. Além disso, a partir dos resultados
é possível prever, parcialmente, como a tecnologia deverá avançar nos próximos anos. O
artigo 2 faz uma revisão dos artigos científicos publicados sobre o fermentação butílica nos
últimos tempos. A principal característica do mesmo é apontar os principais problemas
relacionados à produção, mostrando a importância dada ao substrato utilizado, o microorganismo
e os processos de separação. No artigo 3 uma metodologia para determinação de
solventes no meio de fermentação é desenvolvida. Esta técnica propõe uma relação linear
entre a variação da densidade, a concentração de açúcar e a concentração de solventes. Com
sua aplicação o cromatógrafo pode ser dispensado e há somente a necessidade de um
densímetro. O ajuste se mostrou bastante promissor e aparentemente capaz de predizer os
resultados. Por fim, no artigo 4 é desenvolvido um processo para a produção de biobutanol
via fermentação por clostridium a partir de sorgo sacaríneo. Butanol é produzido a partir do
substrato sendo necessário um acréscimo pequeno de extrato de levedura e triptona com
apenas 12,5% de volume de inóculo, com pH inicial ajustado em 5,5. Para a execução dos
experimentos em meio anaeróbio foram elaborados aparatos alternativos e de baixo custo, que
demonstraram ser eficientes na sua função. O principal ponto observado durante o trabalho é
que é possível produzir biobutanol a partir de sorgo sacaríneo utilizando artefatos fabricados
no laboratório para manutenção do meio anaeróbio.
|
4 |
Retrofitting the domestic built environment : investigating household perspectives towards energy efficiency technologies and behaviourPelenur, Marcos January 2014 (has links)
Retrofitting the UK domestic built environment presents an excellent opportunity to improve its energy performance. However, retrofitting homes is a complex challenge conflated by multiple factors. Due to this complexity, a shortfall exists between the full potential and realised adoption of energy efficiency measures in the UK, a phenomenon termed the ‘Energy Efficiency Gap’. While a number of technical or economic factors may help explain this gap, difficult to quantify factors, such as social motivations, barriers, and viewpoints towards energy are also significant and often under-emphasised in public policy. As such, in order to improve the understanding of the Energy Efficiency Gap and the uptake of future retrofit initiatives, this research adopted a socio-technical approach that considered social and technical retrofit factors together. Specifically, this research collected data from interviews, questionnaires, and a Q Study in the cities of Manchester and Cardiff, alongside a questionnaire that measured energy efficiency technology and behaviour preferences. An original contribution to knowledge was using the data to empirically identify motivations and barriers to adopting energy efficient technologies, as well as identifying household viewpoints towards energy use and linking them to retrofit technology and energy efficiency behaviour preferences. As a result of this research, specific policy recommendations are presented to help promote energy efficiency retrofits in the UK. This research was carried out as part of the Engineering & Physical Science Research Council and Sustainable Urban Environment research programme, “Re-Engineering the City 2020-2050 Urban Foresight and Transition Management (RETROFIT 2050)”.
|
5 |
Analýza procesů správy hypotéčních úvěrů ve společnosti GE Money bank a.s. / Process analysis of administration of Mortgage credit in GE Money bank Plc.Andrlová, Jaroslava January 2013 (has links)
The subject of my dissertation is a process analysis of administration of Mortgage credit in G.E. Money bank Plc. The purpose of analysis is an improvement of selected process inside company. The theoretical part is dedicate to process analysis and corporate decision making process modeling.The practical part has two sections introduction of G.E Money bank Plc.basic description of Mortgage credit phases. The main part of my dissertation is a process analysis in G.E Money bank Plc. The analysis of present state, evaluation and improvement suggestion of selected processes is a main target of my work.
|
6 |
Metodika řešení analytických úloh v BI / Methodology of solving analytical tasks in BIMasagutov, Dmitry January 2010 (has links)
All big and important decisions come through analysis. The main aim of the analysis is to examine or investigate more complicated problems by decomposing them into simpler ones whereas we come to certain conclusions on the basis of a detailed recognition of particularities. This diploma thesis is dedicated to analytic tasks solving techniques in Business Intelligence which would describe and support the whole process of analysis, its needs and premises in real surrounding environment. During the project I cooperated with Clever Decision company and took part in the real project. This company deals with Business Intelligence solutions/applications development and this project is meant to set the method of how to treat the development of the solutions. My work consists in designing a template of BI analysis method which is a part of a complex technique. The aim of this diploma thesis is to introduce my own method of Business Intelligence solution analysis, to introduce its basic components and common work instructions for this method. I reached my aim by analyzing documents and reports provided by Clever Decision company and other methods and suggestions. The main contribution of my diploma thesis is that the method works as a draft for assistance and standardizing the process of Business Intelligence solution analysis in Clever Decision company. This draft can nevertheless work as a basis for creating a wholly new method. My work consists of three parts. The first part, a theoretical one, deals with recapitulation of basic terms and methods I worked with. The second part represents properties, components and general working instructions for this method. It moreover presents main outputs, more precisely documents that are practical attachments to the method itself. The third part introduces the method itself including presentation of outputs/document drafts designed by me.
|
7 |
Lingua madre e lingua target come fonti di errori nei temi in inglese scritti dagli studenti rumeni delle medie: un'analisi dell'errore / Mother Tongue and Target Language as Sources fo Errors in Written Compositions of Lower Secondary Romanian Students of English: an Error AnalysisCOZMA, CLARA 07 April 2008 (has links)
La ricerca prende le mosse dalla constatazione che gli studenti di madrelingua romena delle medie commettono molti errori nell'inglese scritto. Anche facendo tesoro della esperienza condotta come insegnante d'inglese in Romania, ho scelto come tema della Tesi di Dottorato un'analisi dell'errore con lo scopo di scoprirne le ragioni e di proporre dei miglioramenti per l'insegnamento e l'apprendimento.
La ricerca si propone due obiettivi: 1) la messa a punto di un quadro teorico relativo all'analisi contrastiva, all'analisi dell'errore e i modelli di analisi dell'errore; 2) la ricerca sulle origini dell'errore, identificando, descrivendo, classificando e diagnosticando gli errori nell'inglese scritto in cui incorrono solitamente gli studenti romeni.
Lo studio ha preso in esame terminologie relative a errori interlinguistici, transfer negativo/interferenza, interlanguage , errori intralinguistici, gravità degli errori e valutazione degli errori. Lo scopo ultimo è di dimostrare fino a che punto il transfer negativo/interferenza sia la causa di errori nella comunicazione scritta degli studenti romeni e fino a che punto questi errori siano causati dalla lingua target.
I risultati hanno dimostrato che gli errori interlinguistici e quelli intralinguistici sono piuttosto bilanciati. Trova altresì conferma l'ipotesi dell'utilità di stabilire una gerarchia degli errori basata sulla loro frequenza, così da suggerire agli insegnanti contromisure mirate.
l'unico fattore che incide. Trova altresì conferma l'ipotesi dell'utilità di stabilire una gerarchia degli errori basata sulla loro frequenza, così da suggerire agli insegnanti contromisure mirate. / As lower secondary school students commit many errors in writing when English is the target language and Romanian is the native language, I have decided to conduct an error analysis in order to find out what the sources of their errors are, and to suggest improvements for teaching and learning.
The present study is intended to provide a theoretical background for contrastive analysis, error analysis, models for error analysis and sources of errors by identifying, describing, categorising, and diagnosing Romanian students' errors in English written compositions. It will also examine related terms such as interlingual errors, negative L1 transfer/interference, interlanguage errors, intralingual errors, error gravity and error evaluation.
The ultimate goal of this paper is to demonstrate to what extent negative L1 transfer/interference is the cause for errors in my students' English writing and to what extent these errors are caused by the target language.
The findings have demonstrated that interlingual (negative transfer) errors and intralingual (developmental) errors are quite balanced; while interference from the mother tongue plays a role, it is not the only interfering factor. The hypothesis regarding the importance of establishing an error hierarchy based on error frequency has also been validated.
|
8 |
Novel Use of Mobile and Ubiquitous Technologies in Everyday Teaching and Learning Practices : A Complex PictureSalavati, Sadaf January 2013 (has links)
As of autumn 2011, all schools in Sweden have adopted and applied the latest curriculum for the compulsory school system. The following is written in concern to technology: "The school is responsible for ensuring that each pupil on completing compulsory school: [...] can use modern technology as a tool in the search for knowledge, communication, creativity and learning." (Skolverket, 2011, pp.13-14) With this said, there are no guidelines or manuals on how this is to be conducted. In a report from the Swedish Schools Inspectorate it was concluded that the investment in technology is not being used for school education. The education systems keep investing in technology in the belief that schools and teachers will sooner or later adopt and benefit from the use of mobile and ubiquitous technologies. The aim of this study is to “create an understanding of the aspects that have an impact on adopting novel use of mobile and ubiquitous technologies in everyday teaching and learning practices in compulsory schools.” The empirical foundation will be based upon three projects: Geometry Mobile (GeM); Learning Ecology with Technologies from Science for Global Outcomes (LETS GO); and Collaborative Learning Using Digital Pens and Interactive Whiteboards (Collboard). All were conducted at local compulsory schools in Växjö municipality, Sweden, in collaboration with teachers, students and fellow researchers from the CeLeKT research group at Linnaeus University. Two Thematic Analyses have been conducted: the first, an inductive analysis exploring the Students’ and Teachers’ Experience of using Mobile and Ubiquitous Technologies in their learning and teaching environment. The second analysis is deductive and uses themes from the Unified Theory of Acceptance and Use of Technology models with the aim of understanding the Perception and Acceptance of Teachers’ use of Mobile and Ubiquitous Technologies. In the results from the two analyses there are clear indicators on the added value that mobile and ubiquitous technology brings to the classrooms: students are able to actively participate, collaborate and discuss in different learning settings, which enhances their understanding of the subject at hand. The challenges are mainly to be found in the lack of training and education in use of the technology as a supporting tool for teaching and learning. Further factors influencing the teachers and the students are ease of use and reliability of the technology and societal changes. The results of the analysis and the theoretical base of Technology Enhanced Learning have been illustrated with Soft Systems Methodologies Rich Picture, providing a holistic view of the problematic situation and making it possible to discuss the various parts as well as the situation as a whole. This study indicates that there are several factors influencing the adoption of the novel use of mobile and ubiquitous technologies in everyday teaching and learning within a complex situation on different levels.
|
9 |
Teoretické vlastnosti a aplikace pokročilých modelů plánovaného experimentu / THEORETICAL PROPERTIES AND APPLICATIONS OF ADVANCED DESIGNS OF EXPERIMENTHrabec, Pavel January 2020 (has links)
The methodology of the design of experimnet has become an integral part of the optimisation of manufacturing processes in recent decades. Problems regarding designs of experiments are still up to date, especially because of a variety of approaches to collecting and evaluating data. Scientists in different research and development areas often do not take into account possible shortcommings or even essential assumptions of selected design and/or its evaluation methods. This disertation thesis summarizes theoretical bases of selected designs of experiments. Describes several applications of central composite design on responses regarding wire electrical discharge machining process. And compares different designs of experiment for response surfaces of five parameters with regards to algoritmic selection of statistically signifficant parameters.
|
10 |
Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplainsBlanco-Vogt, Ángela 17 December 2015 (has links)
The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions.
The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools.
The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions.
The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts.
The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process.
The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in Magangué and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility.
The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1
1.1 Background 1
1.2 State of the art 2
1.3 Problem statement 6
1.4 Objectives 6
1.5 Approach and outline 6
2 CONCEPTUAL FRAMEWORK 9
2.1 Flood vulnerability 10
2.2 Physical flood vulnerability 12
2.3 Physical flood susceptibility 14
3 METHODOLOGICAL FRAMEWORK 23
3.1 Module 1: Building taxonomy for settlements 24
3.1.1 Extraction of building features 24
3.1.2 Derivation of building parameters for setting up a building taxonomy 38
3.1.3 Selection of representative buildings for a building susceptibility assessment 51
3.2 Module 2: Physical susceptibility of representative buildings 57
3.2.1 Identification of building components 57
3.2.2 Qualification of building material susceptibility 62
3.2.3 Derivation of a depth-physical impact function 71
3.3 Module 3: Technological integration 77
3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77
3.3.2 Tools supporting the physical susceptibility analysis 78
3.3.3 The users and their requirements 79
4 RESULTS OF THE METHODOLOGY TESTING 83
4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83
4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85
4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97
4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103
4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107
4.2.1 Module 1: Building taxonomy – “La Peña” 108
4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121
4.2.3 Module 3: Technological integration– “La Peña” 129
4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133
4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133
4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141
4.3.3 Module 3: Technological integration – “Barrio Sur” 147
4.4 Empirical findings 151
4.4.1 Empirical findings of Module 1 151
4.4.2 Empirical findings of Module 2 155
4.4.3 Empirical findings of Module 3 157
4.4.4 Guidance of the methodology 157
5 DISCUSSION 161
5.1 Discussion on the conceptual framework 161
5.2 Discussion on the methodological framework 161
5.2.1 Discussion on Module 1: the building taxonomic approach 162
5.2.2 Discussion on Module 2: the depth-physical impact function 164
6 CONCLUSIONS AND OUTLOOK 167
6.1 Conclusions 167
6.2 Outlook 168
REFERENCES 171
INDEX OF FIGURES 199
INDEX OF TABLES 201
APPENDICES 203 / In vielen Städten nehmen die Auswirkungen von Hochwasser auf Gebäude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden Vulnerabilität von Besitztümern stetig zu. Es existieren zwar bereits Ansätze zur Beurteilung von Wasserschäden an Gebäuden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großräumig anzuwenden, da es an einer präzisen Klassifizierung und Charakterisierung von Gebäuden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept für ein genaueres Verständnis der physischen Vulnerabilität von Gebäuden gegenüber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großräumigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden.
Die Rahmenbedingungen des Konzepts grenzen die Begriffe der Vulnerabilität, der physischen Vulnerabilität und der physischen Anfälligkeit gegenüber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen Vulnerabilität. Es werden die Merkmale der physischen Anfälligkeit von Gebäuden gegenüber Hochwasser als Bestandteil der Vulnerabilität definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer Gebäudetypologie, (ii) Methoden zur Bewertung der Anfälligkeit repräsentativer Gebäude jedes Gebäudetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel.
Das erste Modul zur Gebäudetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben Gebäudeparametern, die sich für die Klassifizierung von Gebäuden bezüglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur Gebäudeklassifizierung. Die anschließende Ermittlung repräsentativer Gebäude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen.
Das zweite Modul zur Anfälligkeit repräsentativer Gebäude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten Gebäudemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen Wasserständen. Die Materialanfälligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschätzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der Hauptgebäudekomponenten berechnet, die durch unterschiedliche Wasserstände in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen.
Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur Unterstützung des automatisierten Verfahrens dienen Hilfsmittel, die die Gebäudetypologie mit der Funktion von Wasserstand und physischer Einwirkung für Gebäude in Hochwassergebieten kombinieren.
Die Methoden wurden anschließend in drei hochwassergefährdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in Magangué und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der Datenverfügbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung repräsentativer Gebäude sowie die Darstellung der räumlichen Verteilung der physischen Anfälligkeit für Hochwasser.
In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1
1.1 Background 1
1.2 State of the art 2
1.3 Problem statement 6
1.4 Objectives 6
1.5 Approach and outline 6
2 CONCEPTUAL FRAMEWORK 9
2.1 Flood vulnerability 10
2.2 Physical flood vulnerability 12
2.3 Physical flood susceptibility 14
3 METHODOLOGICAL FRAMEWORK 23
3.1 Module 1: Building taxonomy for settlements 24
3.1.1 Extraction of building features 24
3.1.2 Derivation of building parameters for setting up a building taxonomy 38
3.1.3 Selection of representative buildings for a building susceptibility assessment 51
3.2 Module 2: Physical susceptibility of representative buildings 57
3.2.1 Identification of building components 57
3.2.2 Qualification of building material susceptibility 62
3.2.3 Derivation of a depth-physical impact function 71
3.3 Module 3: Technological integration 77
3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77
3.3.2 Tools supporting the physical susceptibility analysis 78
3.3.3 The users and their requirements 79
4 RESULTS OF THE METHODOLOGY TESTING 83
4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83
4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85
4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97
4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103
4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107
4.2.1 Module 1: Building taxonomy – “La Peña” 108
4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121
4.2.3 Module 3: Technological integration– “La Peña” 129
4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133
4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133
4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141
4.3.3 Module 3: Technological integration – “Barrio Sur” 147
4.4 Empirical findings 151
4.4.1 Empirical findings of Module 1 151
4.4.2 Empirical findings of Module 2 155
4.4.3 Empirical findings of Module 3 157
4.4.4 Guidance of the methodology 157
5 DISCUSSION 161
5.1 Discussion on the conceptual framework 161
5.2 Discussion on the methodological framework 161
5.2.1 Discussion on Module 1: the building taxonomic approach 162
5.2.2 Discussion on Module 2: the depth-physical impact function 164
6 CONCLUSIONS AND OUTLOOK 167
6.1 Conclusions 167
6.2 Outlook 168
REFERENCES 171
INDEX OF FIGURES 199
INDEX OF TABLES 201
APPENDICES 203 / El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificación de los fenómenos meteorológicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay métodos disponibles para evaluar los daños por inundación en edificios e infraestructuras críticas. Sin embargo, es muy difícil implementar estos métodos sistemáticamente en grandes áreas debido a la falta de clasificación y caracterización de estructuras construidas en resoluciones detalladas. Para superar este obstáculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad física de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodológico para la combinación de los métodos y herramientas para una análisis de alta resolución y en tercer lugar, la prueba de la metodología en tres sitios experimentales, con distintas condiciones de desarrollo.
El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relación con la vulnerabilidad social y económica. En él se describen las principales características físicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodológico consta de tres módulos: (i) métodos para la derivación de topología de construcciones, (ii) métodos para evaluar la susceptibilidad de edificios representativos y (iii) la integración de los dos módulos a través herramientas tecnológicas.
El primer módulo de topología de construcciones se basa en una clasificación de datos de sensoramiento rémoto y procesamiento SIG para la extracción de siete parámetros de las edficaciones. Este módulo parece ser aplicable para una clasificación de los edificios en relación con los posibles impactos de las inundaciones. El resultado es una taxonomía de las edificaciones y una posterior identificación de edificios representativos que se basa en análisis estadísticos y funciones de pertenencia.
El segundo módulo consiste en el análisis de susceptibilidad de las construcciones representativas a través de funciones de profundidad del impacto físico. Las cuales relacionan los principales componentes de la construcción, incluyendo sus alturas, dimensiones y materiales con los impactos físicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un análisis a través de sistemas expertos difusos. Aquí, las funciones de profundidad de impacto físico son considerados como un medio para la interrelación entre el nivel del agua y los impactos físicos.
El tercer módulo proporciona las herramientas necesarias para la aplicación de la metodología. Estas herramientas tecnológicas consisten en la arquitectura para la alimentación de los datos relacionados a la tipología de construcciones con las funciones de profundidad del impacto físico apoyado en procesos automáticos.
La metodología es probada en tres sitios piloto: (i) en el Barrio Sur en Magangué y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del Río Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del río Elba, en Alemania. Las pruebas de la metodología abarca la descripción de la disponibilidad de los datos y la precisión, los pasos a seguir para obtener las funciones profundidad de impacto físico de edificios representativos y la presentación final de la distribución espacial de la susceptibilidad física frente inundaciones
El discusión analiza las aportaciones de este trabajo y evalua los resultados de la metodología con relación a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigación en términos de avances metodológicos y empíricos y la aplicabilidad general de gestión del riesgo de inundaciones.:1 INTRODUCTION 1
1.1 Background 1
1.2 State of the art 2
1.3 Problem statement 6
1.4 Objectives 6
1.5 Approach and outline 6
2 CONCEPTUAL FRAMEWORK 9
2.1 Flood vulnerability 10
2.2 Physical flood vulnerability 12
2.3 Physical flood susceptibility 14
3 METHODOLOGICAL FRAMEWORK 23
3.1 Module 1: Building taxonomy for settlements 24
3.1.1 Extraction of building features 24
3.1.2 Derivation of building parameters for setting up a building taxonomy 38
3.1.3 Selection of representative buildings for a building susceptibility assessment 51
3.2 Module 2: Physical susceptibility of representative buildings 57
3.2.1 Identification of building components 57
3.2.2 Qualification of building material susceptibility 62
3.2.3 Derivation of a depth-physical impact function 71
3.3 Module 3: Technological integration 77
3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77
3.3.2 Tools supporting the physical susceptibility analysis 78
3.3.3 The users and their requirements 79
4 RESULTS OF THE METHODOLOGY TESTING 83
4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83
4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85
4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97
4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103
4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107
4.2.1 Module 1: Building taxonomy – “La Peña” 108
4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121
4.2.3 Module 3: Technological integration– “La Peña” 129
4.3 Pilot site “Barrio Sur” – Magangué, Colombia – Magdalena River 133
4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133
4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141
4.3.3 Module 3: Technological integration – “Barrio Sur” 147
4.4 Empirical findings 151
4.4.1 Empirical findings of Module 1 151
4.4.2 Empirical findings of Module 2 155
4.4.3 Empirical findings of Module 3 157
4.4.4 Guidance of the methodology 157
5 DISCUSSION 161
5.1 Discussion on the conceptual framework 161
5.2 Discussion on the methodological framework 161
5.2.1 Discussion on Module 1: the building taxonomic approach 162
5.2.2 Discussion on Module 2: the depth-physical impact function 164
6 CONCLUSIONS AND OUTLOOK 167
6.1 Conclusions 167
6.2 Outlook 168
REFERENCES 171
INDEX OF FIGURES 199
INDEX OF TABLES 201
APPENDICES 203
|
Page generated in 0.3183 seconds