Spelling suggestions: "subject:"deethylation"" "subject:"acethylation""
131 |
Analysis of DNA methylation in the growth and development of the Early Alaska pea (Pisum sativum) / DNA methylation in the growth and development of the Early Alaska pea. / D.N.A. methylation in the growth and development of the Early Alaska pea.Neeb, Laura A. 03 June 2011 (has links)
The methylation of specific gene sites is thought to play a controlling role in gene expression in microorganisms, higher plants, and animals. The relationship between methylation of DNA and gene expression has been well documented in microorganisms and animals; however, the regulatory role of methylation in higher plants has remained relatively unresearched. The focus of this study was to investigate fluctuations in DNA methylation during the early development of the pea (Piston sativum).Pea seeds were grown for 12 days (in Vermiculite) in a growth chamber. Duplicate samples of 30 seedlings were harvested daily. The samples were pulse-labeled with S-adenosyl-L-methionine-C3H3 for 10 hr. The labeled methyl group was allowed to be incorporated into the DNA as the samples continued to grow and differentiate. The methyltransferase action was stopped by freezing.DNA was then extracted, purified, and quantitated. Included in the analysis was the quantitation of RNA. The methylation was quantitated through liquid scintillation spectroscopy.Analysis of the fluctuations in the methylation of nucleic acids, over the growth period of seedling differentiation, was done. Methylated DNA was quantitated based on a comparison of radioactivity in extracted DNA minus the radioactivity' attributed to the extracted RNA. Fluctuations in methylation of DNA correlated to the growth patterns observed in the pea seedlings. This study supported the current hypothesis that differentiation in plants may be the result of methylated DNA masking the expression of selective genes. The results suggested that methyl group alterations on RNA follow the DNA pattern and may also play a significant role in gene expression.Ball State UniversityMuncie, IN 47306
|
132 |
Characterization and Analysis of the Bovine Epigenome during Preimplantation Embryo Development In VitroWilliamson, Gayle Linger 2011 August 1900 (has links)
During early mammalian embryogenesis, the embryonic genome undergoes critical reprogramming events that include changes in both DNA methylation and histone modifications necessary to control chromatin structure and thus, gene expression. Improper reprogramming of the epigenome during this window of development can lead to a vast number of imprinting anomalies, which are increased in children and livestock conceived in vitro. In the bovine, which closely resembles human preimplantation development, epigenetic changes occur from fertilization through the blastocyst stages. In particular, and concurrent with embryonic genome activation (EGA), de novo DNA methylation begins at the 8-cell stage. In order to explore the roles of histone-modifying enzymes during this crucial period of development, we characterized the transcript expression of several enzymes key enzymes across in vitro bovine preimplantation development using quantitative real-time PCR. Two of the 7 genes analyzed (Suz12 and Lsh) exhibited notable increases at the 8-16 cell stages, with basal levels observed both before and after this. These increases coincided with both EGA and de novo DNA methylation. We further explored their roles in bovine preimplantation embryos by knocking down expression via the use of gene-specific targeting siRNAs. Independent suppression of either Suz12 or Lsh via cytoplasmic microinjection of targeting siRNAs resulted in lower development rates (p < 0.0001), and poorer embryo quality of the morulas and blastocysts that survived. In addition, Suz12 suppression led to reductions in both H3K27 (p < 0.0001) and H3K9 (p = 0.07) trimethylation, and an increase in DNA methylation levels (p < 0.0001), as compared to the null-injected controls. Lsh suppression did not change H3K27, but led to a reduction in H3K9 trimethylation (p = 0.006) and an increase in DNA methylation (p < 0.0001). Clearly our data demonstrate that these epigenetic modifiers play a critical role in formation of the embryonic epigenome, but further research would be necessary in order to fully characterize gene activities during this developmental window.
|
133 |
A role for epigenetic modifications in the maintenance of mouse Ly49 receptor expressionRouhi, Arefeh 05 1900 (has links)
Although structurally unrelated, the human killer cell immunoglobulin-like (KIR) and the rodent lectin-like Ly49 receptors serve similar functional roles in natural killer (NK) cells. Moreover, both gene families display variegated and mostly mono-allelic expression patterns established at the transcriptional level. DNA methylation, but not histone modifications, has recently been shown to play an important role in maintenance of the expression patterns of KIR genes but the potential role of DNA methylation in the expression of Ly49 genes was unknown. My thesis focuses on the role of epigenetic modifications, especially DNA methylation, in the maintenance of mouse Ly49 gene expression. I show that hypomethylation of the region encompassing the main promoter of Ly49a and Ly49c in primary C57BL/6 (B6) mouse NK cells correlates with expression of these genes. Using B6 x BALB/c Fl hybrid mice, I demonstrate that the expressed allele of Ly49a is hypomethylated while the non-expressed allele is heavily methylated, indicating a role for epigenetics in maintaining mono-allelic Ly49 gene expression. Furthermore, the Ly49a promoter region is heavily methylated in fetal NK cells but variably methylated in non-lymphoid tissues. In apparent contrast to the KIR genes, I show that histone acetylation state of the promoter region strictly correlate with Ly49A and Ly49G expression status. Also, the instability of Ly49G expression on some lymphoid cell lines is at least in part due to changes in the level of histone acetylation of the promoter region. As for the activating Ly49 receptors, it seems that although DNA methylation levels of the promoter regions do
correlate with the state of expression of these receptors, the pattern of DNA methylation is different from that of the inhibitory Ly49a and c genes. In conclusion, my results support a role for epigenetic mechanisms in the maintenance of Ly49 expression. Moreover, these epigenetic mechanisms appear to vary among the Ly49 genes and also differ from those governing KIR expression.
|
134 |
Quantitative Assessment of Mercury Methylation by Phylogenetically Diverse Consortia of Sulfate-Reducing Bacteria in Salt Marsh SystemsKing, Jeffrey Kendall 06 1900 (has links)
No description available.
|
135 |
Transcriptional regulation and chromatin remodeling mechanisms at PHO5Carvin, Christopher Dumas 29 August 2005 (has links)
Regulation of gene expression is vital for proper growth and prevention of disease states. In eukaryotes this regulation occurs in the context of chromatin which creates an inherent barrier for the binding of trans-acting factors, such as transcription factors and RNA polymerase. This dissertation focuses on the role of transcriptional activators and chromatin remodeling coactivators in the regulation of the repressible acid phosphatase gene PHO5. Our studies show that histone methylation at lysine 4 of histone H3 is required for the full repression of PHO5and GAL1-10. We show that bromodomains, a domain conserved in chromatin remodeling coactivators, may function to stabilize binding. Finally, we present a strategy using DNA methyltransferases as in vivo probes to detect DNA-protein interactions and examine chromatin structure. We extend this strategy to zinc-finger proteins which can be engineered to bind to any desired DNA sequence as a means of targeting methylation with potential use in epigenetic silencing.
|
136 |
Acid-catalyzed methanolyses of 1,2-O-alkylidene-and-arylidene-3,4,6-tri-O-methyl-alpha-D-glucopyranosesZgol, Richard, January 1974 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1974. / Includes bibliographical references (p. 133-135).
|
137 |
Aberrant methylation of E-cadherin gene (ECAD) in invasive ductal breast carcinomaLui, Lik-hang, Eric., 雷力恒. January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
138 |
Identification of novel methylated genes in patients with endometrial cancersTse, Ka-yu., 謝嘉瑜. January 2007 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
139 |
DNA methylation patterns in t(8;21) acute myeloid leukemia patientsHo, Siu-ki., 何肇騏. January 2011 (has links)
Acute myeloid leukemia (AML) is a heterogeneous disease both clinically and
biologically. Approximately 55% of AML harbour karyotypic changes, and one of the most common chromosomal aberrations is the t(8;21)(q22;q22), which leads to the AML1-ETO fusion protein. Previous studies have found that this fusion protein recruits the N-CoR/mSin3A/HDAC complex, thereby acts as a transcriptional repressor. Recently, DNA methylation array studies have shown that DNA methylation patterns can stratify AML cases into different subgroups, and some of these correspond to certain chromosomal abnormalities, such as the t(8;21). These findings suggest a possible link between the fusion transcript AML1-ETO and epigenetic modifications. Additionally, c-kit mutations have emerged as an important disease modifier in the t(8;21) AML and are correlated with poor overall survival and event free survival in patients with t(8;21) AML. We therefore sought to investigate whether there are different DNA methylation patterns in t(8;21) AML with or without c-kit mutations. In our series, 52.2% of the t(8;21) AMLs harbored c-kit mutations, which were correlated with poor event free survival. We next performed pyrosequencing on a selected panel of genes and pinpointed the THBS4 and PAWR genes as hypermethylated in their promoter CpG islands in 86.4% and 59.1% of the t(8;21) AML patients, respectively. These data suggest that THBS4 and PAWR may be important in the pathogenesis of t(8;21) AML. / published_or_final_version / Pathology / Master / Master of Philosophy
|
140 |
Identification of leukemia-associated genes by MLL-EEN fusion protein through dysregulation of histone modification and DNA methylationLui, Wing-chi, 呂穎芝 January 2012 (has links)
Mixed lineage leukemia (MLL) gene undergoes chromosomal translocation with over 60 different fusion partner genes in human leukemias. The resultant MLL-fusion oncoproteins are profoundly implicated in leukemias with poor prognosis. Epigenetic dysregulations have been frequently reported in MLL-rearranged leukemogenesis. Our study aims to investigate the correlations between epigenetic alterations, including both histone modification and DNA methylation, and gene dysregulation in MLL-rearranged leukemia.
My study focused on MLL-EEN fusion protein, which causes an onset of acute myeloid leukemia (AML). A novel Mll-Een expressing cell line, VLA33, was derived from the bone marrow of Mll-Een knockin mouse with AML phenotype. The cells were mainly myeloblast cells, possessing clonogenic ability and showed upregulation of Hoxa cluster genes. Previous study demonstrated that the protein arginine methyltransferase 1 (PRMT1) plays a significant role in MLL-EEN leukemogenesis through conferring H4R3 asymmetric dimethylation (H4R3me2a) mark on HoxA9 locus. Consistently, our ChIP analysis demonstrated enrichment of H4R3me2a at the Hoxa promoters while knockdown of Prmt1 attenuated the expression of Hoxa genes and reduced in vitro clonogenic potential of VLA33 cells.
CD41, Runx1 and Tgm2 genes, which showed elevated expression in VLA33 cells, were identified as potential target genes of Mll-Een/Prmt1 complex. However, enrichment of active H4R3me2a was only observed at Runx1 promoters, but not at the regulatory regions of CD41 and Tgm2. Inhibition of Prmt1 by inhibitor AMI-1 reduced Runx1 and CD41 expression. Although Prmt1 knockdown reduced the enrichment of H4R3me2a at Runx1 promoter, it did not suppress the expression of Runx1. These data suggest the involvement of other regulatory mechanism and Prmt1 is not the sole factor causing gene dysregulation.
CD41 is a marker of murine definitive hematopoietic progenitors. Interestingly, the CD41+ VLA33 cells demonstrated a trend of enhanced self-renewal ability in colony-forming assay as compared with CD41-/low cells. The CD41 expression was positively correlated with Mll-Een and Prmt1 expression. In addition, CD41+ cells expressed higher level of Hoxa9, Bmi-1, Runx1, Tal-1 and Lmo2 genes that are associated with HSC activities, suggesting reactivation of stem-cell regulatory program in CD41+ leukemia cells, which confer as leukemia stem cell population.
The association between DNA methylation and MLL-EEN leukemogenesis was also investigated. The results demonstrated the establishment of stem cell Hox code, which was correlated with DNA hypomethylation status at Hox gene promoters in Mll-Een leukemia cells. Besides, Hox activation through DNA hypomethylation was independent of Prmt1-mediated histone modification, but was found associated with reduction of Bmi-1 binding at Hox loci.
In conclusion, my study identified novel dysregulated genes in Mll-Een leukemogenesis. My findings provide insight into the reactivation of stem-cell program in leukemia cells through epigenetic dysregulation, which furthers our understanding of MLL-rearranged leukemogenesis. / published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
|
Page generated in 0.0644 seconds