• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the histone methyl-transferase, set1, in variable gene expression and cell type proportioning in D. discoideum

Salvidge, William January 2018 (has links)
During multicellular development, cells must make fate decisions that reproducibly generate the correct cell type proportions. It is remarkable that in certain developmental scenarios, seemingly identical cells in a homogenous environment can achieve this. It is thought that this is possible because cell populations exhibit reproducible cell-cell variation in gene expression. How these differences are generated has been intensely studied over the past decade, with transcriptional bursting emerging as an important factor for driving variability between cells. Furthermore, it is thought that chromatin structure around gene promoters is a key regulator of transcriptional bursting. However, key questions remain. What factors regulate chromatin structure at the molecular level? Is the activity of chromatin regulators governed by random processes or entrained by one of many hidden factors such as cell cycle positioning, cell volume, metabolism? Are the proportions of cells exhibiting different bursting patterns regulated to ensure normal cell fate choice and proportioning? To address these questions, we have investigated whether different regulators of chromatin structure affect the pre-stalk/pre-spore fate decision in the social amoebae D. discoideum. We have identified that set1, a methyl-transferase responsible for generating methylation on histone 3 at position lysine 4 (H3K4me), plays a key role in controlling the balance of cell types in multicellular development as in its absence cells become autonomously primed towards a pre-stalk fate. Single cell RNA-sequencing has revealed that genes normally regulated by this modification represent a specific class of hyper-variable genes. We find that this variability is generated by specific set1 dependent repression at these loci, as upon deletion of this enzyme we see an active recruitment of more cells to an expressing state. Our data suggest that set1 activity itself is controlled by the external source of the cell cycle. This cell cycle dependent regulation robustly ensures the correct proportions of cells within the population contain levels of set1 activity that prime 25% of cells towards the pre-stalk lineage and the other 75% to the pre-spore fate. As such we believe our study reveals a novel mechanism linking specific regulation of transcriptional bursting through the activity of set1 to cell fate propensity.
2

Transcriptional regulation and chromatin remodeling mechanisms at PHO5

Carvin, Christopher Dumas 29 August 2005 (has links)
Regulation of gene expression is vital for proper growth and prevention of disease states. In eukaryotes this regulation occurs in the context of chromatin which creates an inherent barrier for the binding of trans-acting factors, such as transcription factors and RNA polymerase. This dissertation focuses on the role of transcriptional activators and chromatin remodeling coactivators in the regulation of the repressible acid phosphatase gene PHO5. Our studies show that histone methylation at lysine 4 of histone H3 is required for the full repression of PHO5and GAL1-10. We show that bromodomains, a domain conserved in chromatin remodeling coactivators, may function to stabilize binding. Finally, we present a strategy using DNA methyltransferases as in vivo probes to detect DNA-protein interactions and examine chromatin structure. We extend this strategy to zinc-finger proteins which can be engineered to bind to any desired DNA sequence as a means of targeting methylation with potential use in epigenetic silencing.
3

Transcriptional regulation and chromatin remodeling mechanisms at PHO5

Carvin, Christopher Dumas 29 August 2005 (has links)
Regulation of gene expression is vital for proper growth and prevention of disease states. In eukaryotes this regulation occurs in the context of chromatin which creates an inherent barrier for the binding of trans-acting factors, such as transcription factors and RNA polymerase. This dissertation focuses on the role of transcriptional activators and chromatin remodeling coactivators in the regulation of the repressible acid phosphatase gene PHO5. Our studies show that histone methylation at lysine 4 of histone H3 is required for the full repression of PHO5and GAL1-10. We show that bromodomains, a domain conserved in chromatin remodeling coactivators, may function to stabilize binding. Finally, we present a strategy using DNA methyltransferases as in vivo probes to detect DNA-protein interactions and examine chromatin structure. We extend this strategy to zinc-finger proteins which can be engineered to bind to any desired DNA sequence as a means of targeting methylation with potential use in epigenetic silencing.
4

Recrutement de l'hélicase Pif1 par la protéine de réplication RPA durant la réplication et aux cassures double-brin de l'ADN : Etude fonctionnelle de l'Histone méthyltransférase Set1 dans la régulation de la taille des télomères chez Saccharomyces cerevisiae

Maestroni, Laetitia 14 December 2011 (has links)
Différents rôles de l'hélicase Pif1 ont été décrit dont le plus documenté est de décrocher la télomérase des télomères en déroulant les hybrides ARN/ADN formés entre l'ARN de la télomérase et l'ADN télomérique. Plus récemment, une nouvelle voie de signalisation des dommages à l'ADN a été mise en évidence, qui inhibe l'action de la télomérase au niveau d'une cassure de l'ADN via la phosphorylation de l'hélicase Pif1. Cette phosphorylation, dépendante de la kinase ATR (Mec1), inhibe la réparation aberrante de la cassure d'ADN par la télomérase. Nous étudions au sein de l’équipe la protéine RPA (Replication Protein A), affine de l'ADN simple-brin, qui recrute à la fois la protéine de recombinaison homologue Rad52 et la protéine Mec1 impliquée dans la cascade de signalisation des dommages de l'ADN. Lors de l'étude de différentes fonctions de l'hélicase Pif1, j'ai mis en évidence une interaction robuste entre Pif1 et RPA. J'ai identifié un allèle de RFA1, rfa1-D228Y, affectant l'interaction Pif1/RPA et montré, grâce à cet allèle, que cette interaction est impliquée dans le recrutement de Pif1 au niveau d'une cassure double-brins (CDB) induite de l'ADN. Enfin, il a été récemment mis en évidence un nouveau rôle de Pif1 dans la stabilité des G-Quadruplexes durant la réplication du brin avancé. En effet, les cellules pif1 présentent un taux d'instabilité du minisatellite CEB1 inséré sur le brin avancé d'environ 56%, correspondant à des réarrangements de l'ADN de type contractions ou expansions. Lors de l'étude de l'interaction Pif1/RPA, j'ai montré que la mutation rfa1-D228Y entraîne une instabilité du minisatellite CEB1 présent sur le brin avancé, similaire à celle observée avec la délétion pif1∆. Nous suggérons un modèle selon lequel RPA recruterait Pif1 au cours de différents processus cellulaires tels que la réponse des dommages à l'ADN ou la réplication des structures particulières de l'ADN telles que les G-Quadruplexes.En parallèle de cette étude, j’ai étudié le rôle de l'histone méthyltransférase Set1 spécifique de la lysine 4 de l'histone H3 dans la régulation de la taille des télomères. J’ai mis en évidence que le raccourcissement des télomères observé dans un mutant set1 est lié à l'absence de di- et tri-méthylation de H3K4 alors que la perte de monométhylation n'a aucun effet. Cependant, le défaut de la taille des télomères dans les cellules set1∆ n'est pas uniquement lié au défaut de méthylation de H3K4 mais semble impliquer une autre activité de Set1 qu’il reste à déterminer. Etonnamment, nous avons observé que la délétion de SET1 aggrave le raccourcissement des télomères des mutants dont les gènes sont impliqués dans la régulation positive de la taille des télomères et inversement, aggrave le rallongement des télomères de mutants dont les gènes sont impliqués dans la régulation négative des télomères. Nous postulons que l’inactivation de Set1 pourrait à la fois inhiber l’activation précoce des origines de réplication des régions subtélomériques et conduire à un sur-raccourcissement de la taille des télomères, à la fois affecter la synthèse du brin complémentaire dans un contexte où celle-ci est affectée (mutant rif1) et conduire à un sur-allongement des télomères. Une seconde hypothèse propose que Set1 régulerait la transcription deTERRA dans des cellules ayant les télomères déprotégés (mutant rif) entraînant le sur-allongement des télomères. / Different roles of Pif1 helicase have been described, the best documented being to remove telomerase from telomeres by unwinding the RNA/DNA hybrid between telomerase RNA and telomeric DNA. Recently, it was shown that the DNA damage signaling down-regulates telomerase action at a DNA break via Pif1 phosphorylation. Pif1 phosphorylation is dependent of the checkpoint kinase ATR (Mec1) and prevents the aberrant healing of broken DNA ends by telomerase. In our laboratory, we study RPA (Replication Protein A), a single-strand DNA binding protein which recruits the proteins involved in the DNA damage response and checkpoint regulation, such as the homologous recombination protein Rad52 and Mec1 involved in the DNA damage response. I have identified an allele of RFA1, rfa1-D228Y, that affects the Pif1/RPA interaction and showed using this allele that this interaction is implicated in the Pif1 recruitment at an induced double-strand break. Recently, a new role of Pif1 in the stability of G-quadruplex DNA during the leading strand replication has been described. pif1 cells show an instability about 56% of the human minisatellite CEB1 inserted on the leading strand. During my study of the Pif1/RPA interaction, I showed that the rfa1-D228Y mutant induced a similar instability of CEB1 minisatellite on the leading strand. We suggested that RPA would recruit Pif1 for many cellular processes such as DNA damage response or replication of secondary DNA structures such as G-Quadruplexes.In parallel, I have studied the role of the Set1 Histone methyltransferase which catalyse the methylation of the lysine 4 of histone H3, in the regulation of telomere length. I showed that the telomere shortening observed in set1 mutant is due to the loss of di- and tri-methylation of H3K4 while the loss of monomethylation has no effect. However, the short telomeres in set1∆ cells is not only due to the methylation defect shedding light on a new Set1 activity that remains to be fully characterized.. The SET1 deletion aggravates the telomere shortening of mutants which genes are involved in positive regulation of telomere length and conversely, aggravates the lengthening of mutants which genes are involved in negative regulation of telomere length. We postulated that inactivation of Set1 could affect at once activation of early-replication origins and leads to a telomere shortening, and affect synthesis of complementary strand in a context where this one is affected (mutant rif1) and leads to a telomere lengthening. A second hypothesis propose that Set1 would regulate TERRA transcription in cells with deprotected-telomere (rif mutant) leading to the lengthening of telomeres.
5

Rôles distincts des différentes formes de méthylation de H3K4 dans deux mécanismes de répression transcriptionnelle et mise en évidence d'une nouvelle voie de surveillance moléculaire liée à l'excès d'histones libres / Disctincts roles for different formes of H3K4 methylation in two transcriptional repression mechanisms and discovery of a new molecular surveillance pathway linked to an excess of free histones

Oréal, Vincent 01 July 2010 (has links)
Les relations entre les histones qui composent les nucléosomes et le processus de transcription des gènes codants, sont à la fois multiples et extrêmement complexes. Au cours de ma thèse, je me suis intéressé à deux de ces relations. Tout d’abord, une première étude a été réalisée en collaboration avec les laboratoires de Franck Holstege et de Catherine Dargemont. Ce travail permet de préciser clairement l’effet des différentes formes de méthylation de la lysine 4 de l’histone H3 sur l’activité transcriptionnelle. Dans cette étude nous démontrons que la méthylation de H3K4 n’influence la transcription que d’un nombre très limité de gènes. Concernant ces gènes, un profil non conventionnel de distribution des formes de méthylation de H3K4 a été identifié par la présence inhabituelle d’un enrichissement en 3’ de ces gène des formes di- et triméthylées de H3K4.L’effet majoritaire de cette marque est d’induire une répression transcriptionnelle selon au moins deux mécanismes distincts. L’enrichissement atypique de la triméthylation de H3K4 influence négativement l’expression des gènes via la production d’ARN non codant anti-sens. Concernant l’effet répressif associé à la diméthylation de H3K4, la quantité d’ARN anti-sens ainsi que sa production ne sont pas impliquées.Dans une seconde étude réalisée en collaboration avec les laboratoires de Sebastian Chavez etd’Akash Gunjan, nous nous sommes intéressés au complexe FACT qui est impliqué dans l’assemblage et le désassemblage des nucléosomes lors du passage de l’ARN polymérase II. Jusqu’alors, un défaut de croissance chez les mutants thermosensibles du complexe FACT avait pu être observé. Dans notre étude, nous montrons que l’altération de FACT conduit, lors de la transcription, à l’éviction d’histones normalement incorporées à la chromatine. L’accumulation de ces histones libres à fort potentiel toxique, induit une répression spécifique de CLN3 qui code pour la première cycline dephase G1. Pour la première fois, nous mettons en évidence dans cette étude l’existence d’un mécanisme de surveillance moléculaire du cycle cellulaire induit par l’excès d’histones non incorporées à la chromatine / Relationships between histones, components of nucleosomes, and the transcription process of coding genes are both multiple and extremely complex. During my Thesis, I looked at twoof these relationships. First, we performed a study in collaboration with the Franck Holstedge and Catherine Dargemont labs. This work has allowed us to clearly define the effect of various methylation forms of the lysine 4 of the histone 3 on gene transcription. In this study we have shownthat H3K4 methylation influences the transcription of only a very limited number of genes. For these genes, a non conventional distribution profile of H3K4 methylation forms has been identified by the presence of an unusual enrichment in di- and trimethylated H3K4 in the 3’ of these genes. The principal effect of this mark is to promote transcriptional repression by at least two distinct mechanisms. The atypical enrichment of H3K4 trimethylation negatively influences gene expressionvia the production of non coding antisense RNA. For the repressive effect associated with dimethylH3K4, the quantity of antisense RNA as well as its production are not involved. We propose severalh ypotheses that link our results to the data known on this subject. In a second study performed incollaboration with the Sebastian Chavez and Akash Gunjan labs, we concentrated on the FACT complex that is involved in the assembly and disassembly of nucleosomes as RNA polymerase IImoves past. Previously, a growth defect in thermosensitive mutants of the FACT complex had been observed. In our study, we show that FACT deterioration leads to the eviction of histones that arenormally incorporated into chromatin during transcription. The accumulation of these free histones,which have a high toxic potential, induces the specific repression of CLN3 which encodes for the firstcyclin of G1 phase. For the first time, we show in this study the existence of a cell cycle molecular surveillance mechanism that is induced by an excess of free histones
6

Efektory chromatinových modifikací a jejich vztah k regulaci transkripce na modelu Saccharomyces cerevisiae / Chromatin modifiers and their relation to transcription regulation in Saccharomyces cerevisiae

Hálová, Martina January 2011 (has links)
Relations among transcription, pre-mRNA processing and chromatin modifications are only partially understood. The human protein SNW1/SKIP belongs to factors which couple these processes. The protein plays role in pre-mRNA splicing and transcription on the level of both initiation and elongation. According to the hypothesis of K. Jones laboratory, it physically and functionally interacts with positive transcription elongation factor b during transcription elongation and influences methylation of histone H3 on lysine 4, a modification characteristic for active transcription (Bres et al., Genes Dev. 19:1211-26, 2005, Bres et al., Mol Cell. 36:75-87, 2009). The yeast ortholog of SNW1/SKIP, Prp45, was until now reported only in connection with splicing regulation. However, unpublished results from our Laboratory and others showed that it is employed in transcription elongation as well. The aim of the diploma project was to search for the relations between Prp45 and the factors regulating transcription. It was confirmed that the mutation prp45(1 169) results in the delay of PHO5 and PHO84 expression during transcriptional induction. Next, we discovered new genetic interactions between PRP45 and several genes encoding the effectors of chromatin modifications. How Prp45 influences the expression of PHO5 and PHO84...
7

New insights into the functions of the two mitotic kinases, NIMA and CDK1, through the cell cycle

Govindaraghavan, Meera 09 August 2013 (has links)
No description available.
8

Structure-function analysis of CXXC finger protein 1

Tate, Courtney Marie 26 January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation describes structure-function studies of CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, in order to determine the functional significance of Cfp1 protein domains and properties. Cfp1 is an important regulator of chromatin structure and is essential for mammalian development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1-/-) are viable but demonstrate a variety of defects, including hypersensitivity to DNA damaging agents, reduced plating efficiency and growth, decreased global and gene-specific cytosine methylation, failure to achieve in vitro differentiation, aberrant histone methylation, and subnuclear mis-localization of Setd1A, the catalytic component of a histone H3K4 methyltransferase complex, and tri-methylated histone H3K4 (H3K4me3) with regions of heterochromatin. Expression of wild-type Cfp1 in CXXC1-/- ES cells rescues the observed defects, thereby providing a convenient method to assess structure-function relationships of Cfp1. Cfp1 cDNA expression constructs were stably transfected into CXXC1-/- ES cells to evaluate the ability of various Cfp1 fragments and mutations to rescue the CXXC1-/- ES cell phenotype. These experiments revealed that expression of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) is sufficient to rescue the hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and differentiation defects. These results reveal that Cfp1 contains redundant functional domains for appropriate regulation of cytosine methylation, histone methylation, and in vitro differentiation. Additional studies revealed that a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the 1-367 fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1A and Setd1B histone H3K4 methyltransferase complexes ablates the rescue activity of the 361-656 Cfp1 fragment. In addition, introduction of both point mutations (C169A and C375A) ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either DNA-binding or Setd1 association of Cfp1 is required to rescue hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and in vitro differentiation. In contrast, confocal immunofluorescence analysis revealed that full-length Cfp1 is required to restrict Setd1A and histone H3K4me3 to euchromatic regions.
9

THE ROLE OF SET1 MEDIATED HISTONE H3K4 METHYLATION IN ANTIFUNGAL DRUG RESISTANCE AND FUNGAL PATHOGENESIS IN CANDIDA SPECIES

Kortany M. Baker (13775098) 14 September 2022 (has links)
<p>  </p> <p>Fungal pathogens are an increasing threat to humans, plants, and animals worldwide. Death and disease caused by fungal pathogens results in the loss of over 1.5 million lives, 12 million tons of crops, and even entire species every year. <em>Candida </em>species are the leading cause of invasive fungal species lead by <em>Candida albicans, </em>and <em>Candida glabrata </em>in second. <em>Candida glabrata </em>intrinsically has a low susceptibility to azole treatment, and multidrug resistant isolates are becoming more common. Additionally, new emerging <em>Candida </em>species have been found, and most clinical isolates are resistant to one or more drugs. There is a critical need to better understand drug resistance and pathogenesis to generate new therapies. </p> <p>Drug resistance can be caused by several different genetic factors, but until recently epigenetic factors have been frequently overlooked. Epigenetic research has revolutionized the treatment and detection of many cancers. And now, early research has shown epigenetic mechanisms play a role in drug resistance and pathogenesis in fungal species. Limited resources exist to combat fungal infections and understanding the epigenetic mechanisms that contribute to drug resistance and pathogenicity will provide new drug targets for future treatment.</p> <p>Previous publications from the Briggs’ lab showed Set1-mediated histone H3K4 methylation was necessary for proper ergosterol homeostasis and Brefeldin A resistance. One of the three classes of antifungals, azoles, target the ergosterol pathway. The ergosterol connection resulted into this thesis project, investigating the role of Set1-mediated histone H3K4 methylation in drug resistance and pathogenicity in <em>Saccharomyces cerevisiae, Candida glabrata, Candida albicans, </em>and <em>Candida auris. </em>This research was the first to characterize the Set1 complex in <em>C. glabrata </em>and show it is the sole histone H3K4 methyltransferase in <em>C. glabrata </em>and <em>C. auris. </em>Additionally, it shows loss of <em>SET1 </em>in <em>C. glabrata </em>and <em>C. auris </em>reduces pathogenicity and alters drug efficacy. Interestingly, although the loss of <em>SET1</em> seems to cause a similar pathogenic defect in all three <em>Candida </em>species, the role Set1 plays in drug efficacy including which drug and severity varies amongst species and isolates. Altogether, this research project provides new possible drug targets for fungal treatment and knowledge added to the scientific community on the role of epigenetics in fungal pathogens. </p>

Page generated in 0.0924 seconds