Spelling suggestions: "subject:"2metric spaces"" "subject:"trimetric spaces""
31 |
Geometry of Banach spaces and some fixed point theorems. --Yadav, Raj Kishore. January 1972 (has links)
Thesis (M.A.) -- Memorial University of Newfoundland. / Typescript. Bibliography : leaves 97-105. Also available online.
|
32 |
Bitopological spaces, compactifications and completionsSalbany, Sergio. January 1974 (has links)
Originally presented as the author's thesis, University of Cape Town, 1970. / Includes bibliographical references (p. 97-99).
|
33 |
Classical trees and compact ultrametric spacesMirani, Mozhgan. January 2006 (has links)
Thesis (Ph. D. in Mathematics)--Vanderbilt University, May 2006. / Title from title screen. Includes bibliographical references.
|
34 |
Metric and Topological Approaches to Network Data AnalysisChowdhury, Samir 03 September 2019 (has links)
No description available.
|
35 |
The amalgamation property for G-metric spaces and homeomorphs of the space (2a)a.Hung, Henry Hin-Lai January 1972 (has links)
No description available.
|
36 |
Continua and Related TopicsBrucks, Karen M. (Karen Marie), 1957- 08 1900 (has links)
This paper is a study of continue and related metric spaces, Chapter I is an introductory chapter. Irreducible continua and noncut points are the main topics in Chapter II. The third chapter begins with a few results on locally connected spaces. These results are then used to prove results in locally connected continua. Decomposable and indecomposable continua are dealt with in Chapter IV. Totally disconnected metric spaces are studied in the beginning of Chapter V. Then we see that every compact metric space is a continuous image of the Cantor set. A continuous map from the Cantor set onto [0,1] is constructed. Also, a continuous map from [0,1] onto [0,1]x[0,1] is built, Then an order preserving homeomorphism is constructed from a metric arc onto [0,1],
|
37 |
Hyperspace TopologiesFreeman, Jeannette Broad 08 1900 (has links)
In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.
|
38 |
Existence of laws with given marginals and specified supportShortt, Rae Michael Andrew January 1982 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Bibliography: leaves 106-109. / by Rae Michael Andrew Shortt. / Ph.D.
|
39 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan 07 March 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
40 |
Voronoi Diagrams in Metric SpacesLemaire-Beaucage, Jonathan 07 March 2012 (has links)
In this thesis, we will present examples of Voronoi diagrams that are not tessellations. Moreover, we will find sufficient conditions on subspaces of E2, S2 and the Poincaré disk and the sets of sites that guarantee that the Voronoi diagrams are pre-triangulations. We will also study g-spaces, which are metric spaces with ‘extendable’ geodesics joining any 2 points and give properties for a set of sites in a g-space that again guarantees that the Voronoi diagram is a pre-triangulation.
|
Page generated in 0.0574 seconds