• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis Of Stochastic And Non-stochastic Volatility Models

Ozkan, Pelin 01 September 2004 (has links) (PDF)
Changing in variance or volatility with time can be modeled as deterministic by using autoregressive conditional heteroscedastic (ARCH) type models, or as stochastic by using stochastic volatility (SV) models. This study compares these two kinds of models which are estimated on Turkish / USA exchange rate data. First, a GARCH(1,1) model is fitted to the data by using the package E-views and then a Bayesian estimation procedure is used for estimating an appropriate SV model with the help of Ox code. In order to compare these models, the LR test statistic calculated for non-nested hypotheses is obtained.
2

Quantum Emulation with Probabilistic Computers

Shuvro Chowdhury (14030571) 31 October 2022 (has links)
<p>The recent groundbreaking demonstrations of quantum supremacy in noisy intermediate scale quantum (NISQ) computing era has triggered an intense activity in establishing finer boundaries between classical and quantum computing. In this dissertation, we use established techniques based on quantum Monte Carlo (QMC) to map quantum problems into probabilistic networks where the fundamental unit of computation, p-bit, is inherently probabilistic and can be tuned to fluctuate between ‘0’ and ‘1’ with desired probability. We can view this mapped network as a Boltzmann machine whose states each represent a Feynman path leading from an initial configuration of q-bits to a final configuration. Each such path, in general, has a complex amplitude, ψ which can be associated with a complex energy. The real part of this energy can be used to generate samples of Feynman paths in the usual way, while the imaginary part is accounted for by treating the samples as complex entities, unlike ordinary Boltzmann machines where samples are positive. This mapping of a quantum circuit onto a Boltzmann machine with complex energies should be particularly useful in view of the advent of special-purpose hardware accelerators known as Ising Machines which can obtain a very large number of samples per second through massively parallel operation. We also demonstrate this acceleration using a recently used quantum problem and speeding its QMC simulation by a factor of ∼ 1000× compared to a highly optimized CPU program. Although this speed-up has been demonstrated using a graph colored architecture in FPGA, we project another ∼ 100× improvement with an architecture that utilizes clockless analog circuits. We believe that this will contribute significantly to the growing efforts to push the boundaries of the simulability of quantum circuits with classical/probabilistic resources and comparing them with NISQ-era quantum computers. </p>

Page generated in 0.1052 seconds