• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 364
  • 74
  • 53
  • 41
  • 30
  • 11
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 749
  • 122
  • 73
  • 48
  • 45
  • 44
  • 44
  • 44
  • 41
  • 40
  • 38
  • 38
  • 34
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Phylogeography of the Endemic Species Japalura brevipes of Taiwan Based on cytochrome b Sequences and Morphology

Chou, Chang-En 11 July 2007 (has links)
The study intended to investigate the phylogeography of mid-altitude species, Japalura brevipes, which is the endemic to Taiwan. I used mitochondrial cytochrome b sequences and morphological characters to investigate the phylogeography. The molecular results showed that there are 16 haplotypes. The length of partial cytochrome b sequences is 617 bp including 84 informative sites, and the mean genetic distance is 5.4%. In phylogenetic analyses, three major clades were found in the phylogenetic trees. Moreover, these clades (north, central-north and south) corresponded to the geographic distribution. Analysis of population genetic structure revealed significant differentiation among populations, and most of the haplotypes were restricted to the locally. The morphological analyses showed that there is no difference between sexes at 18 characters, with the exception of the axilla-groin length and dorsal-crest scales. The Principal Component Analysis and Canonical Discriminate Analysis using 16 morphological characters showed the different results. Principal Component Analysis failed to separate populations. However, Canonical Discriminate Analysis could discriminate the populations of Guanwu, Nanheng, Sihyuantkou and Wuling Farm from others. Phylogeography of J. brevipes belonged to category 1 defined by Avise (2000). I infer refuge effect and dispersal ability hypotheses to explain the genetic structure of J. brevipes.
242

Hot Cracking Susceptibility Of Twin Roll Cast Al-mg Alloys

Tirkes, Suha 01 October 2009 (has links) (PDF)
Increasing use of aluminum alloys in the automotive industry increases the importance of the production of sheet aluminum. To provide cost effective sheet aluminum to the industry, twin-roll casting (TRC) is becoming more important compared to DC casting. Demand for usage of different aluminum alloys in sheet form introduces some difficulties that should be considered during their applications. The main problem encountered during the welding of aluminum alloys is hot cracking. The aim of this study is to understand the difference in hot cracking susceptibility of two twin roll cast (TRC) aluminum-magnesium alloys (5754 and 5049 alloys) during welding. Varestraint test method was used to evaluate the effect of welding parameters, strain levels, filler alloys and mid-plane segregation on hot cracking susceptibilities. Hot cracking susceptibility of both 5049(Al-2wt%Mg) and 5754(Al-3wt%Mg) alloys increased with increasing strain level. Also, it was observed that hot cracking susceptibility was higher for the alloy having higher magnesium content. Thermal analysis results verified that hot cracking susceptibility indeed can be related to the v solidification range. As is suggested in the solidification range approach, the results of the present study confirm that the extent of solidification and liquation cracking depend on the magnitude of solidification range and the strain imposed during welding. Hot cracking susceptibility of 5754(Al-3wt%Mg) alloy has shown slightly decreasing behavior with addition of 5356 filler alloy. On the other hand, addition of 5183 filler alloy has increased solidification cracking susceptibility of two base alloys. The fracture surfaces of liquation and solidification cracks were investigated by scanning electron microscope with EDS. Liquation crack surfaces of the 5754(Al-3wt%Mg) alloy were found to have high Mg and Si content. For the 5754(Al-3wt%Mg) alloy, a quench test was designed to observe the effect of mid-plane segregation zone. It was observed that there was a eutectic reaction resulting in formation of liquid phase below solidus temperature of 5754(Al-3wt%Mg) alloy. Moreover, internal cracks have formed at the mid-plane segregation zone after Varestraint test. Results show that 5049(Al-2wt%Mg) alloy should be chosen compared to 5754(Al-3wt%Mg) alloy for welding. Moreover, low line energy should be applied and filler alloys with high magnesium content should be used during welding to decrease hot cracking tendency of welds.
243

Paleolimnological Investigations From Modern Coastal Lakes On Thrace And Black Sea Coast Of Turkey During The Mid-late Holocene

Sekeryapan, Ceran 01 September 2011 (has links) (PDF)
Here, we provide results of mid/late Holocene fresh water Ostracoda analyses from coastal modern lake basins in the Thrace region of Istanbul and Sarikum Lake, on the Black Sea coast near Sinop. While neither diatoms nor Cladocera are abundant in the sediments, Podocopian (fresh water) ostracods preserved well, but with discontinuous occurences during the mid/late Holocene. Un-noded forms of Cyprideis torosa, along with other Podocopian ostracods, dominated the sediments of all three lakes. Studying these three lagoonal basins along the Black Sea and Thracian coasts of Turkey allows reconstruction of long term, regional environmental histories, using the following methods. Loss-on-ignition (LOI) analyses at 1 cm intervals of short and long cores provide stratigraphic cross-correlation and calculations of organic matter, carbonate and mineral weight. At 5 cm intervals, spectrally-inferred chlorophyll-a contents by visible reflectance spectroscopy (Michelutti et al., 2010), provide estimates of algal production. Trace element analysis (Mg/Ca and Sr/Ca) using ICP-AES (coupled plasma atomic emission spectroscopy) is applied to fully calcified adult specimens of un-noded forms of Cyprideis torosa shells (which dominate the uppermost 145 cm of Terkos Lake). 210Pb and 137Cs dating of short cores, and AMS 14C dating of long cores, are used to infer sediment accumulation rates and to place specific ages on inferred environmental changes. Benthic foraminifers, gastropods, bivalves, single valves of fossil Glochidia, and Charophyte seeds are the other biological indicators observed within the sediment archive. Based on these data: 1. Terkos Lake sediments contain records of multiple, sub-millennial scale marine incursion events, over the last 2.8 ka, inferred to be the result of severe storms or tsunami on the Black Sea, including the tsunami in AD 1598 and AD 557-543 / 2. short core sediments from Sarikum Lake reveal sharp decreases in organic matter, carbonate, and increases in algal production and sand amount that suggest a storm or more recent earthquake / such as the Great Erzincan Earthquake (26 December, 1939) or the Bartin earthquake (3 September, 1968) while four more such events appear in the undated sediments of the Sarikum Lake long core / and 3. a large earthquake in AD 447 that affected the entire Sea of Marmara (Leroy et al., 2002) does not appear in the B&uuml / y&uuml / k&ccedil / ekmece Lake sediment record, but there is evidence for a significant hiatus in these deposits before the development of the dam (AD 1989) and after the youngest AMS date (2400 cal yrs BP). This suggests that B&uuml / y&uuml / k&ccedil / ekmece Lagoon was an environment of net erosion prior to its artificial impoundment, either from gradual processes or from scouring by one or more tsunami.
244

FT-IR and quantum cascade laser spectroscopy towards a hand-held trace gas sensor for benzene, toluene, and xylenes (BTX)

Young, Christina Rachel 16 November 2009 (has links)
The work described herein focuses on FT-IR and quantum cascade laser (QCL) based studies towards the development of compact and portable trace gas sensor for benzene, toluene, and xylenes (BTX). FT-IR broadband radiation was used to probe the mid-infrared fingerprint region for quantitatively detecting trace gas levels of BTX. Using direct absorption through a hollow waveguide, parts-per-million (ppm) detection limits for BTX with a response time of 39 seconds was demonstrated. Univariate calibration provided limits of detection (3σ) for benzene, toluene, and meta-xylene at 5, 17, and 11 ppm, respectively. Multivariate calibration using partial least squares regression algorithms were used to simulate real-world conditions with multiple analytes present within a complex sample. A calibration model was built with 110 training set standards enabled by using a customized gas mixing system. Furthermore, a preconcentration/thermal desorption (TD) step was added to the FT-IR HWG trace gas sensor enabling parts-per-billion detection of BTX. A univariate calibration was established in the laboratory with certified gas standards over a dynamic range of 1000 - 100 ppb for benzene, toluene, and the xylenes. The sensor was then taken to an industrial site during a field measurement campaign for the quantitative determination of BTX in field air samples. The laboratory calibration was used to predict unknown concentrations which were in close agreement with industrial hygiene standard techniques, and industrial prototype analyzers, that were simultaneously operated in the field environment. In addition to FT-IR, quantum cascade laser spectroscopy was also investigated due to enhanced spectral density and efforts to precisely overlap emission with analyte absorption. Particular efforts were dedicated on a novel principle for consistent and deliberate QCL emission wavelength selection by varying the QCL cavity length. These studies experimentally confirmed that using this straight-forward post-processing technique, emission wavelength tuning across a range of one hundred wavenumbers range may be achieved. This tuning range was experimentally demonstrated for a QCL emitting across an entire absorption feature of carbon dioxide by tailoring the length of the cavity. Additionally, using an external cavity (EC) - QCL combined with a HWG gas sensor module for the first time enabled the quantitative and simultaneous determination of ethyl chloride, trichloromethane, and dichloromethane within exponential dilution experiments at ppb limits of detection. Multianalyte detection was demonstrated utilizing partial least squares regression for quantitative discrimination of individual constituents within a mixture, yet applying a single broadly tunable QCL light source.
245

Fate of the Houston skyline : stategies adopted for rehabilitating mid-century modern high-rises

Srinivasan, Urmila 08 July 2014 (has links)
A recent report by Terrapin Bright Green “Mid-century (Un) Modern” discusses the desperate condition of mid-century modern high-rises in Manhattan. The article argues that it would be beneficial both economically and environmentally to demolish these buildings and build new ones with an assumed increase in FAR. To re-build, repair or re-skin are the questions Mid-century Modern High-rises (MMH) face today. This study focuses on Houston, Texas, which is very different from New York City both climatically and from a planning stand point. It is dreaded for its hot and humid climate and notorious for its consistent refusal to adopt any zoning. These high-rises in Houston represent the economic success of the city immediately after WWII. These buildings were constructed as the city transformed from the Bayou City to the Space city. In this study I have mapped the status of these high-rises and the strategies that were used to renovate them. The questions I further wish to address are how preservation or energy efficiency are addressed while renovating these buildings. Even preservationists might agree that all buildings are not equal and a new look would benefit some. The real challenge lies in resolving the grey areas, where one is not talking about a Seagram or a Lever House, but a well designed environmentally sensitive building. / text
246

Urban sports club

劉安得, Lau, On-tak. January 1996 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
247

Direct Utilization Of Elemental Sulfur For Novel Copolymeric Materials

Griebel, Jared James January 2015 (has links)
This dissertation is composed of seven chapters, detailing advances within the area of sulfur polymer chemistry and processing, and highlights the relevance of the work to the fields of polymer science, energy storage, and optics that are enabled through the development of novel high sulfur-content copolymers as discussed in the following chapters. The first chapter is a review summarizing both the historical forays into utilization of elemental sulfur in high sulfur-content materials and the current research on the incorporation of sulfur into novel copolymers and composites for high value added applications such as energy production/storage, polymeric optical components, and dynamic/self-healing materials. Although recent efforts by the materials and polymer chemistry communities have afforded innovative sulfur containing materials, many studies fail to take advantage of the low cost and incredible abundance of sulfur by incorporating only minimal quantities into the end products. A fundamental challenge in the preparation of sulfur-containing polymers is simultaneous incorporation of high sulfur-content through facile chemical methods, to truly use the element as a novel feedstock in copolymerizations. Contributing to the challenge are the intrinsic limitations of sulfur (i.e., low miscibility with organic solvents, high crystallinity, and poor processability). The emphasis in chapter 1 is the critical development of utilizing sulfur as both a reagent and solvent in a bulk reaction, termed inverse vulcanization. Through this methodology we can directly prepare materials which retain the advantageous properties of elemental sulfur (i.e., high electrochemical capacity, high refractive index, and liable bond character), obviate the processing challenges, and enable precise control over composition and properties in a facile manner. The second chapter focuses on advancement in colloid synthesis, specifically an example mediated by in-situ reduction of organometallic precursors (ClAu^IPPh₃) by elemental sulfur at high temperatures. In chapter 2, elemental sulfur is employed both as a reactant and novel solvent, generating composite composed of well-defined gold nanoparticles (Au NPs) fully dispersed in a sulfur matrix. While the synthesis of Au NPs in molten sulfur was a novel development the challenge of analyzing the particles directly within the sulfur composite matrix by microscopy techniques required improvement of the composites mechanical properties. To overcome this issue, a one-pot reaction in which the Au NPs were initially synthesized, was vulcanized through an ambient atmosphere-tolerant bulk copolymerization by the addition of a difunctional comonomer (divinylbenzene). The improved composite integrity enabled microtoming and transmission electron microscopy analysis of the particles within the crosslinked reaction matrix. Due to the facile capabilities of directly dissolving the comonomers within the molten sulfur the inverse vulcanization methodology provides a simple route to prepare stable, high sulfur-content copolymers in a single one-pot reaction. The third chapter expands upon the methodology for direct dissolution of difunctional comonomers into molten elemental sulfur to afford chemically stable copolymer. A major challenge associated with the high temperature (i.e., 185 °C) bulk copolymerization reactions between sulfur and vinyl comonomers (i.e., divinylbenzene, DVB) is the high volatility of the organic monomers at elevated temperatures (BP of DVB = 195 °C). To obviate this problem required a novel monomer with an increased boiling point for successful scaling of the inverse vulcanization methodology. The work presented in chapter 3 details the employment of 1,3-diisopropenylbenzene (DIB, BP = 231 °C) to enable larger scale bulk inverse vulcanization reactions, allowing facile control over thermomechanical properties by simple variation in copolymer composition (50–90-wt% S₈, 10–50-wt% DIB). Poly(Sulfur-random-1,3-diisopropenylbenzene) ((poly(S-r-DIB)) copolymers prepared via the inverse vulcanization methodology possess substantially improved processing capabilities compared with elemental sulfur. A facile demonstration of improved processability is the generation of free-standing micropatterned structures using a high sulfur content liquid pre-polymer resin that can be poured into a mold and cured into the desired final form. The highest weight percentage copolymer (i.e., 90-wt% S₈) was also demonstrated to improve cycle lifetimes and capacity retention (823 mAh•g⁻¹ at 100 cycles) of a Lithium-Sulfur (Li-S) cell when the copolymer was utilized as the active material instead of elemental sulfur. Chapter four focuses on the optimization of Li-S cell performance as a function of copolymer composition and provides a more thorough understanding of the means by which copolymer active material improves battery performance. A substantial challenge associated with Li-S cells is the fast capacity fade and short cycle lifetimes that result from loss of the active material (i.e., sulfur) during normal cycling processes. The field has generally addressed these issues by encapsulation of the sulfur in a protective shell (e.g., polymeric, carbonaceous, or metal oxide in nature) in an attempt to sequester the active material. However, encapsulation of sulfur is non-trivial and leads to low loadings of sulfur, resulting in a low energy density within the final cell. To address the challenges associated with maintaining high capacity and long cycle lifetimes while employing an active material which is low cost, generated in a facile manner, and has a high sulfur content required a novel approach. In the work presented in chapter 4 we prepared high sulfur content copolymers via the inverse vulcanization methodology, which meet all the requirements necessary of an active material, and investigated the performance of Li-S batteries as a function of the copolymer composition. A survey of several poly(S-r-DIB) copolymer compositions were prepared with DIB compositions ranging from 1-50-wt% DIB (i.e., 50-99 wt% sulfur) and screened to determine optimal compositions for optimal Li-S battery performance. From this analysis it was determined that copolymers with 10-wt% DIB (90-wt% S₈) were optimal for producing Li-S batteries with high capacity and long cycle lifetimes. 10-wt% DIB copolymers batteries ultimately achieved long cyclic lifetimes and maintained high capacity (>600 mAh/g at 500 cycles). Chapter five details the optimization of conditions necessary to generate large scale (>100 g) inversely vulcanized sulfur copolymers and their application towards Li-S batteries. As previously stated a significant challenge in the Li-S battery field is the production of a Li-S active material with improved performance that is low cost, synthesized in a facile manner, and possesses high sulfur content. To date poly(S-r-DIB) copolymers prepared via the inverse vulcanization methodology afford some of the longest cycle lifetimes and highest capacity retention for polymeric active materials. However, initial inverse vulcanization reactions investigated for preparing active materials were performed on 10 gram scales. The goal of the work presented in chapter 5 was to prepare materials on a scale applicable to fabrication of several prismatic Li-S cells, each of which requires several grams of active material. However, scaling up of the reaction to a kilogram and utilizing the traditional inverse vulcanization conditions (i.e., 185 °C) results in catastrophic degradation as a consequence of the Trommsdorf effect. To address this challenge required decreasing the radical concentration within the bulk copolymerization, which necessitated performing the kilogram scale inverse vulcanization reactions at lower temperatures (i.e., 130 °C) over a longer reaction period. Decreasing the temperature generates materials that are nearly identical in thermomechanical properties to smaller scale samples and the battery performance is likewise comparable (>600 mAh/g at 500 cycles). The key advantage of performing the inverse vulcanization reaction at lower temperatures is that additional monomers, with lower boiling points or degradation issues, can be utilized and the increased gelation time, enables facile incorporation of additives (e.g., carbon black or nanoparticles) into the reaction. Chapter six focuses on the development of poly(S-r-DIB) copolymers as novel mid-infrared (mid-IR) transmitting materials and the analysis of the optical properties as a function of copolymer composition. A challenge in the optical science community is the limited number of materials applicable to the development of innovative optical components capable of functioning in the mid and far-IR regions. Semi-conductor and chalcogenide glasses have been widely applied as device components in infrared optics due to their high refractive indices (n ~2.0–4.0) and high transparency in the infrared region (1–10 μm). However, such materials are also expensive, difficult to fabricate, and toxic in comparison to organic polymers. On the other hand organic polymers are easily processed, low cost, and generated from easily accessible raw materials. Unfortunately, polymeric materials generally have low refractive indices (n<1.65) and are prepared from monomers with functional groups that are highly absorbing at mid-IR and longer wavelengths. Chapter 6 details the realization through the inverse vulcanization methodology of the first example of a material that is high refractive index and low mid-IR absorption, but also low cost and easily processable. Critical to achieving a polymeric material which was appropriate for mid-IR applications was the high sulfur content and the absence of functional groups, both of which are afforded by the facile copolymerization process. By simply controlling copolymer composition the optical properties of the material were tailorable; allowing adjustment of the refractive index from ~1.75 (50-wt% DIB) to ~1.875 (20-wt% DIB). Finally, through facile techniques, high quality copolymers lenses were prepared and we demonstrated the high optical transparency over several regions of the optical spectrum, from the visible (400–700 nm) all the way to the mid-IR (3–5μm). Poly(S-r-DIB) copolymers demonstrated high transparency to mid-IR light, but still maintain the processing capabilities of an organic polymer, the first example of such a material to possess both qualities. Ultimately the inverse vulcanization methodology offers a novel route to low cost, high refractive index, IR transparent materials, opening up unique opportunities for polymeric optical components within the optical sciences field. The seventh chapter discusses utilization of the inverse vulcanization methodology as a means to prepare and control the dynamic behavior of sulfur copolymers for potential applications towards self-healing materials. The incorporation of dynamic covalent bonds into conventional polymer architectures, either directly within the backbone or as side-chain groups, offers the stability of covalent bonds but with the ability of stimuli-responsive behavior to afford a change in chemical makeup or morphology. Traditionally the installation of such functionality requires the use of disparate, orthogonally polymerizable functional groups (i.e., vinyl) and discrete design of the comonomers utilized to generate a responsive copolymer. Therefore, a challenge in developing novel dynamic copolymers is the ability to install stimuli-responsive functionality directly as a result of the copolymerization without the need for rigorous synthetic monomer design and complex copolymerization techniques. In chapter 7 we discuss the analysis of poly(S-r-DIB) copolymers with rheological techniques to assess the composition dependent dynamic behavior. Aided by the bulk nature of copolymerization, the feed ratio of S₈ and DIB directly dictates copolymer microstructure; thus the sulfur rank between the organic groups (i.e., DIB) was tailorable from a single sulfur (thioether) to multiple sulfurs (pentasulfide). Control over sulfur content and number of S–S enables control over the dynamic behavior, as monitored via in-situ rheological techniques. The highest sulfur-content copolymers (80-wt% S₈, 20-wt% DIB) showed the fastest response when under shear stress due to the large number of S–S bonds. On the other hand when no dynamic bonds were present in the copolymer (i.e.; 35-wt% S₈, 65-wt% DIB) there is no dynamic behavior and full recovery of the pristine mechanical properties was not observed. The facile synthesis and simple control over copolymer microstructure affords the inverse vulcanization methodology an advantage over other dynamic materials, and provides potential secondary qualities (i.e., high refractive index) built directly into the structure.
248

A Study of Image Artifacts Caused By Structured Mid-spatial Frequency Fabrication Errors on Optical Surfaces

Tamkin, John M. January 2010 (has links)
Aspheric and freeform surfaces are becoming more common as optical designs become more sophisticated and new generations of fabrication tools reduce cost. Unlike spherical surfaces, these surfaces are fabricated with processes that leave a signature or "structure" that is primarily in the mid-spatial frequency region. Tolerancing aspheric and freeform surfaces requires attention to both surface form and structured mid-spatial frequency fabrication errors. These structured surface errors are shown to create image artifacts such as ghosts, and ripples in the MTF profile. Spatial frequencies beyond "form" errors are often ignored or are modeled with statistical descriptors, which do not account for structured errors.This work explores and develops the theory to describe these errors without statistical assumptions. The analytic source of these artifacts in the image Point Spread Function and the Modulation Transfer Function are compared with computational models. The magnitudes of the image artifacts arising from structured surface errors are shown to be non-linear with surface height. It is also shown that multiple structured surface frequencies mix to create sum and difference diffraction orders that are not present in statistical models.An algorithm is developed that enables an optical designer to determine the important spatial frequencies and magnitudes of allowable errors given an MTF performance budget.
249

Food and the City: An Examination of the Role of Food in Local Neighbourhood Revitalization

Beaulieu, Nadine January 2010 (has links)
The majority of people in North America have lost not only the knowledge of how to successfully sustain themselves from the land but, even more troubling, the basic knowledge of where the food comes from, what real food is, or even what to do with it. It is not only basic knowledge of food that is being lost in the consumer culture; many of the private and public spaces that were central to the social fabric of the city, street, and family are changing and losing their significance. The mass marketing of the consumer lifestyle has led to the disappearance of home gardens, local restaurants, neighbourhood coffee shops, and farmers’ markets. It has altered the fine grain of our city, streets, and homes, thereby reducing the social interactions that once created lively streets in the past. This thesis examines both the historical and current relationship and influence of food in cities, streets and homes in relation to the growing issues of access to fresh whole food and the dispersed city form. In addition, it will investigate how food orientated developments such as Community Food Centres can act as a catalyst for urban revitalization in failing urban cores and provide a resiliency to the economies of the city. The analysis of the influence of food, challenges that midsized cites are facing, and a series of precedents will provide a set guidelines for architects and planners developing urban projects. Three main themes are explored as a means to revitalization of urban neighbourhood through food: reuse of under used or abandoned land, our cultural connection to food, and the activities and culture that the two create together. These themes will explore the use and cultural significance of kitchens, markets, and restaurants and public space as architectural spaces that create community as a means to better understand what mechanisms of these aspects are the keys to the building of vibrant communities. This concept will be explored through the design of a community food centre in St. Patrick’s Ward in Guelph, Ontario.
250

Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation

Hajialamdari, Mojtaba January 2013 (has links)
In this thesis, I have developed a tunable two-color two-stage ultrafast Yb:fiber chirped pulse amplifier for the generation of short-pulse mid-infrared (MIR) radiation in the long-wavelength side of the "molecular fingerprint" (2.5-25 μm) using difference frequency generation (DFG) technique. The two colors called blue and red are in the wavelengths 1.03-1.11 μm and are amplified simultaneously in the same Yb-doped fiber amplifier (YDFA) stages in order to reduce the induced environmental noise on the phase difference of the pulses and to minimize the complexity and system cost. I will present numerical simulations on the two-stage YDFA system to amplify a two-color spectrum in the wavelengths 1.03-1.11 μm. The first and second YDFA called preamplifier and main amplifier are single-clad, single-mode and double-clad, single-mode YDFA respectively. From numerical simulations, the optimal length of the preamplifier to have equal power at two colors centered at 1043 nm and 1105 nm are in agreement with experimental results. It is well known that the power of MIR radiation generated by difference frequency mixing of two wavelengths scales up with the product of mixing powers in a fixed-field approximation. Furthermore, for the gain narrowing effect on the short-wavelength side of the YDFA gain profile, the spectral bandwidth of the blue color decreases resulting in pulse broadening. In addition, for the two colors separated largely, the amplified spontaneous emission is intensified. Considering the cited factors, I will present the modeling results on the two-color, two-stage YDFA system that the product of the power of the two colors is maximized for a maximized wavelength separation between the two mixing colors and a minimized gain narrowing on the blue color in order to build an as broadly tunable and powerful as possible ultrafast mid-infrared source by difference frequency mixing of the two colors. In this research, I achieved a wavelength separation as broad as 71 nm between pulses centered at 1038 nm and 1109 nm from the two-color ultrafast YDFA system. I achieved combined average powers of 2.7 W just after the main amplifier and 1.5 W after compressing the two-color pulses centered at 1041 nm and 1103 nm to nearly Fourier transform limited pulses. From autocorrelation measurements, the full width at half maximum (FWHM) of the compressed two-color pulses with the peak wavelengths of 1041 nm and 1103 nm was ~500 fs. By mixing the tunable two-color pulses in a 1-mm-thick GaSe crystal using DFG technique, I achieved tunable short-pulse MIR radiation. In this research, I achieved short-pulse MIR radiation tunable in the wavelengths 16-20 μm. The MIR tuning range from the lower side was limited to the 16 μm because of the 71-nm limitation on the two-color separation and from the upper side was limited to the 20 μm because of the 20-μm cutoff absorption wavelength of GaSe. Based on measured MIR spectra, the MIR pulses have a picosecond pulse duration in the wavelengths 16-20 μm. The FWHM of measured spectra of the MIR pulses increases from 0.3 μm to 0.8 μm as the MIR wavelength increases from 16 μm to 20 μm. According to Fourier transform theory, the FWHM of the MIR spectra corresponds to the bandwidth of picosecond MIR pulses assuming that the MIR pulses are perfectly Fourier-transform-limited Gaussian pulses. In this research, I achieved a maximum average power of 1.5 mW on short-pulse MIR radiation at the wavelength 18.5 μm corresponding to the difference frequency of the 500-fs two-color pulses with the peak wavelengths of 1041 nm and 1103 nm and average powers of 1350 mW and 80 mW respectively. Considering the gain bandwidth, Ti:sapphire is a main competitor to the YDFA to be used in the two-color ultrafast laser systems. In the past, the broad gain bandwidth of Ti:sapphire crystal has resulted in synchronized two-color pulses with a wavelength separation up to 120 nm. Apart from its bulkiness and high cost, Ti:sapphire laser system is limited to a watt-level output average power at room temperature mainly due to Kerr lensing problem that occurs at high pumping powers. In comparison, YDFA as a laser amplifier has a narrower gain bandwidth but it is superior in terms of average power. Optical parametric generation (OPG) and optical parametric amplification (OPA) techniques are two competitors to DFG technique for the generation of short-pulse long-wavelength MIR radiation. Although OPG offers a tunability range as broad as DFG, the MIR output power is lower because of the absence of input signal pulses. From the OPA technique, the tunability range is not as broad as the DFG technique due to limitations with the spectral bandwidth of the optical elements. Currently, quantum cascade lasers (QCLs) are the state-of-art MIR laser sources. At the present time, the tunability range of a single MIR QCL is not as abroad as that achieved from the DFG technique. More, mode-locked MIR QCLs are not abundant mainly because of the fast gain recovery time. Thus, the generation of widely tunable short-pulse MIR radiation from DFG technique such as that developed in this thesis remains as a persistent technological solution. The application of the system developed in this thesis is twofold: on one hand, the tunable two-color ultrashort pulses will find applications for example in pump-probe ultrafast spectroscopy, short-pulse MIR generation, and optical frequency combs generation. On the other hand, the short-pulse MIR radiation will find applications for example in time-resolved MIR spectroscopy to study dynamical behavior of large molecules such as organic and biological molecules.

Page generated in 0.0428 seconds