• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development Of Gyroless Attitude And Angular Rate Estimation For Satellites

Vivek Chandran, K P 07 1900 (has links)
Studies aimed at the development of indigenous low cost star tracker and gyroless attitude and angular rate estimation is presented in the thesis. This study is required for the realization of low cost micro satellites. A target specification of determining the attitude with accuracy (3σ) of 0.05 degrees and attitude rate with accuracy (3σ) in the range of 50rad/sec at a rate of 10 samples/second in all the axes is set as a goal for the study. Different sensor arrays available in the market are evaluated on the basis of their noise characteristics, resolution of the analog-to-digital converter (ADC) present and ability to work in low light conditions, for possible use in the hardware realization of star tracker. STAR1000 APS CMOS array, manufactured by Cypress Semiconductors, qualified these performance criteria, is used for the simulation study. An algorithm is presented for scanning the sensor array, detection of star image and retrieving the information concerning the photoelectron counts corresponding to a star image. The exact designation of the center of the star image becomes crucial as it has direct implications on the accuracy of the estimated attitude. Various algorithms concerning the centroid estimation of a defocused star image on the sensor array to subpixel accuracy are studied and Gaussian Weighed Center of Gravity algorithm is adapted with some modifications and an accuracy of 0.039 pixels is obtained in both horizontal and vertical direction of the array. A one-to-one relationship is established between the stars obtained in the field-of-view (FOV) of the star tracker with the stars present in the star catalog resident in the star tracker through star identification algorithm. A star identification algorithm which relies on the interstar angles and brightness of the stars is developed in this thesis. The interstar angles of the stars visible in the FOV of the star sensor is recorded, compared with the inter-star angles made by the stars selected in the catalog, based on initial brightness match with stars formed on image plane. After identification at the initial epoch, consequent instants can drive information from the previous matches so as to decrease the computational complexity and storage requirement for the subsequent instants. The memory constraints and computational overhead on the processor and the dynamic range of the image detector used in the star tracker are the limiting factors. The stars thus identified with the stars in the catalog are used for the estimation of attitude. A point solution to the attitude estimation problem is computed using a least square based algorithm called ESOQ-2. The algorithm for centroiding of star images and ESOQ-2 for finding the point solution satellite attitude is coded and tested on Da Vinci based emulator. This exercise shows that it is possible to implement above algorithm for real time operations. Estimation of attitude at a given epoch using algorithms like ESOQ-2 does not minimize the noise and error covariance as the attitude estimated at each instant of time depends only on the measurement taken at that particular instant. So a Kalman Filter (KF) based estimation using Integrated Rate Parameter (IRP) formulation called SIAVE algorithm, is adapted, with some modifications, for the estimation of incremental angle and attitude rates from vector observations of stars. From the point solution of attitude estimation problem of the satellite, the incremental angle and angular rate at successive time steps are predicted using a linear KF and refined with the measurements from the stand alone star tracker, taken at discrete time steps, using the SIAVE algorithm. The sensor noise is modeled from the characteristics of STAR1000 sensor array used in the algorithm in order to make the simulations more realistic in nature. The optimality of Kalman filter is based on the assumption that the state and measurement noises are white gaussian random processes and the state dynamics of the plant is completely known. However, for most real systems, modeling uncertainties are present. So a robust state estimator based on H∞ norm minimization is devised. The H∞ filter, based on game theory approach is used to minimize the worst case variance of noise signals with the only assumption on the noise signals that they are energy bounded. The aim is to find the feasibility of using H∞ filter for the estimation of incremental angle and attitude rate of the satellite. The studies shows that H∞ filter with proper tuning can serve as potential estimation scheme for the attitude and angular rate estimation of the satellite. It is found that both Kalman filter and H∞ are able to meet the specified accuracy desired from low cost accurate star sensor.
2

Accurate and Efficient Algorithms for Star Sensor Based Micro-Satellite Attitude and Attitude Rate Estimation

Pal, Madhumita January 2013 (has links) (PDF)
This dissertation addresses novel techniques in determining gyroless micro-satellite attitude and attitude rate. The main objective of this thesis is to explore the possibility of using commercially available low cost micro-light star sensor as a stand-alone sensor for micro-satellite attitude as well as attitude rate determination. The objective is achieved by developing accurate and computationally efficient algorithms for the realization of onboard operation of a low fidelity star sensor. All the algorithms developed here are tested with the measurement noise presented in the catalog of the sensor array STAR-1000. A novel accurate second order sliding mode observer (SOSMO) is designed for discrete time uncertain linear multi-output system. Our design procedure is effective for both matched and unmatched bounded uncertain ties and/or disturbances. The bound on uncertainties and/or disturbances is assumed to be unknown. This problem is addressed in this work using the second order multiple sliding modes approach. Second order sliding manifold and corresponding sliding condition for discrete time system is defined similar on the lines of continuous counterpart. Our design is not restricted to a particular class of uncertain (matched) discrete time system. Moreover, it can handle multiple outputs unlike single out-put systems. The observer design is achieved by driving the state observation error and its first order finite difference to the vicinity of the equilibrium point (0,0) in a finite steps and maintaining them in the neighborhood thereafter. The estimation synthesis is based on Quasi Sliding Mode (QSM) design. The problem of designing sliding mode observer for a linear system subjected to unknown inputs requires observer matching condition. This condition is needed to ensure that the state estimation error is a asymptotically stable and is independent of the unknown input during the sliding motion. In the absence of a matching condition, asymptotic stability of the reduced order error dynamics on the sliding surface is not guaranteed. However, unknown bounded inputs guarantee bounded error on state estimation. The QSM design guarantees an ultimate error bound by incorporating Boundary Layer (BL) in its design procedure. The observer achieves one order of magnitude improvement in estimation accuracy than the conventional sliding mode observer (SMO) design for an unknown input. The observer estimation errors, satisfying the given stability conditions, converge to an ultimate finite bound (with in the specified BL) of O(T2), where T Is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The robustness of the proposed observer with respect to measurement noise is also analyzed. The design algorithm is very simple to apply and is implemented for two examples with different classes of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results show the robustness with respect to the measurement noise for SOSMO. Second order sliding mode observer gain can be calculated off-line and the same gain can work for large band of disturbance as long as the disturbance acting on the continuous time system is bounded and smooth. The SOSMO is simpler to implement on board compared to the other traditional nonlinear filters like Pseudo-Linear-Kalman-filter(PLKF); Extended Kalman Filter(EKF). Moreover, SMO possesses an automatic adaptation property same as optimal state estimator(like Kalman filter) with respect to the intensity of the measurement noise. The SMO rejects the noisy measurements automatically, in response to the increased noise intensity. The dynamic performance of the observer on the sliding surface can be altered and no knowledge of noise statistics is required. It is shown that the SOSMO performs more accurately than the PLKF in application to micro-satellite angular rate estimation since PLKF is not an optimal filter. A new method for estimation of satellite angular rates through derivative approach is proposed. The method is based on optic flow of star image patterns formed on a star sensor. The satellite angular rates are derived directly from the 2D-coordinates of star images. Our algorithm is computationally efficient and requires less memory allocation compared to the existing vector derivative approaches, where there is also no need for star identification. The angular rates are computed using least square solution method, based on the measurement equation obtained by optic flow of star images. These estimates are then fed into discrete time second order sliding mode observer (SOSMO). The performance of angular rate estimation by SOSMO is compared with the discrete time First order SMO and PLKF. The SOSMO gives the best estimates as compared to the other two schemes in estimating micro-satellite angular rates in all three axes. The improvement in accuracy is one order of magnitude (around1.7984 x 10−5 rad/ sec,8.9987 x 10−6 rad/ sec and1.4222 x 10−5 rad/ sec in three body axes respectively) in terms of standard deviation in steady state estimation error. A new method and algorithm is presented to determine star camera parameters along with satellite attitude with high precision even if these parameters change during long on-orbit operation. Star camera parameters and attitude need to be determined independent of each other as they both can change. An efficient, closed form solution method is developed to estimate star camera parameters (like focal length, principal point offset), lens distortions (like radial distortion) and attitude. The method is based on a two step procedure. In the first step, all parameters (except lens distortion) are estimated using a distortion free camera model. In the second step, lens distortion coefficient is estimated by linear least squares (LS) method. Here the derived camera parameters in first step are used in the camera model that incorporates distortion. However, this method requires identification of observed stars with the catalogue stars. But, on-orbit star identification is difficult as it utilizes the values of camera calibrating parameters that can change in orbit(detector and optical element alignment get change in orbit due to solar pressure or sudden temperature change) from the ground calibrated value. This difficulty is overcome by employing a camera self-calibration technique which only requires four observed stars in three consecutive image frames. Star camera parameters along with lens (radial and decentering) distortion coefficients are determined by camera self calibration technique. Finally Kalman filter is used to refine the estimated data obtained from the LS based method to improve the level of accuracy. We consider the true values of camera parameters as (u0,v0) = (512.75,511.25) pixel, f = 50.5mm; The ground calibrated values of those parameters are (u0,v0) =( 512,512) pixel, f = 50mm; Worst case radial distortion coefficient affecting the star camera lens is considered to be k1 =5 x 10−3 .Our proposed method of attitude determination achieves accuracy of the order of magnitude around 6.2288 x 10−5 rad,3.3712 x 10−5 radand5.8205 x 10−5 rad in attitude angles φ,θ and ψ. Attitude estimation by existing methods in the literature diverges from the true value since they utilize the ground calibrated values of camera parameters instead of true values. To summarize, we developed a formal theory of discrete time Second Order Sliding Mode Observer for uncertain multi-output system. Our methods achieve the desired accuracy while estimating satellite attitude and attitude rate using low fidelity star sensor data. Our methods require lower on-board processing requirement and less memory allocation; thus are suitable for micro-satellite applications. Thus, the objective of using low fidelity star sensor as stand-alone sensor in micro-satellite application is achieved.

Page generated in 0.0692 seconds