• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanofabrication de boîtes quantiques latérales pour l'optimisation de qubits de spin

Camirand Lemyre, Julien January 2012 (has links)
On présente dans ce travail un nouveau type de qubit de spin dont les performances reposent sur les propriétés d'un seul électron dans une double boîte quantique. Le fort moment dipolaire de la double boîte combiné à une large variation du champ magnétique entre les deux boîtes permettrait de réaliser des opérations logiques plus rapidement que dans une seule boîte quantique. Pour maximiser les variations du champ magnétique, on utilisera un micro-aimant placé le plus près possible d'une des deux boîtes. À cette fin, une hétérostructure de GaAs/A1GaAs sur laquelle sont déposées des grilles d'aluminium a été utilisée pour former une double boîte quantique latérale. L'occupation par un seul électron de la double boîte est confirmée par des mesures de transport électrique à basse température ainsi que par l'observation du blocage de spin. De plus, un procédé d'oxydation des grilles par plasma d'oxygène a été développé. Une étude des propriétés de l'oxyde formé par cette méthode montre qu'il est possible de placer un micro-aimant directement sur la surface de l'hétérostructure sans affecter l'isolation électrique entre les grilles. Cette nouvelle approche permet de produire des champs magnétiques encore plus intenses que dans les expériences antérieures, pour lesquelles le micro-aimant est placé beaucoup plus loin de la surface. L'ensemble du procédé de fabrication, de la photolithographie à l'électrolithographie, a été développé au cours de ce travail dans les salles blanches du département de génie électrique et dans les salles propres du département de physique de l'Université de Sherbrooke. Ce travail est une étape importante dans la réalisation de qubits de spin plus performants dans les boîtes quantiques latérales.
2

Attraction des cellules sur micro-aimants : applications au suivi de l'endocytose et au tri cellulaire .

Osman, Osman 25 April 2014 (has links)
De nos jours, la manipulation d’objets à l’aide du champ magnétique se trouve au cœur de nombreuses innovations en nanotechnologies. D’autre part, et du fait de sa capacité d’actionner à très petite échelle, l’utilisation du champ magnétique en biologie et en médecine est en plein essor. En outre, les grandes avancées en matière de fabrication de micro-sources magnétiques ont permis la synthèse d’aimants de tailles micrométriques intégrables dans des microsystèmes microfluidiques comme les laboratoires sur puce, très à la mode à l’heure actuelle. Bien que la séparation de cellules marquées magnétiquement, à l’aide d’un macro-aimant permanent ou d’électroaimant est une tâche aujourd’hui bien maitrisée, le gradient de champ généré par ces sources magnétiques reste insuffisant pour l’isolement de cellules marquées avec une très faible quantité de nanoparticules magnétiques. La réduction de la taille des aimants, évoquée dans cette thèse, constitue une alternative prometteuse, permettant la génération d’énormes gradients de champ magnétique à l’échelle micrométrique. L’objectif de ce travail est donc d’étudier l’attraction de cellules faiblement marquées magnétiquement, sur des réseaux de micro-aimants permanents micro-structurés, dans le but de concevoir un dispositif microfluidique original intégrant des micro-sources magnétiques permanentes, autonomes et passives. / Nowadays, the magnetic field applications at the microscopic scale have been described by an increasing attention as magnetic sources. Moreover, they can be integrated directly in the microchip. Nevertheless, the process of manipulating magnetic micro objects remains a challenge since the generation of magnetic fields and field gradients is strong enough. Previous research has reported the use of microelectromagnets to create magnetic field gradients in order to manipulate biological objects. However, the use of permanent magnetic microstructures permits to avoid Joule heating issues inherent to the electromagnets. In addition, no energy source is required. The aim of this thesis is to study the influence of physico-chemical characteristics of iron oxide nanoparticles on the rate of endocytosis, using an array of micro-magnets. Most probably, the applications of this reserach can be directly related to the gene therapy and can occur in most basic genetic studies. Another part of this work consists of combining microfluidic and magnetic forces in order to develop a cell sorting micro-systems that can be integrated in lab-on-chip or MEMS.
3

Applications des micro-aimants aux Lab-on-Chip / Lab-on-Chip applications of micro-magnets

Fratzl, Mario 19 October 2018 (has links)
Les fonctions magnétiques sont aujourd'hui omniprésentes dans les systèmes Lab-on-Chip. Une découverte surprenante est que tandis que la recherche Lab-on-Chip se concentre sur la miniaturisation, les fonctions magnétiques sur puce sont généralement assurées par des aimants centimétriques. Comparés à ces aimants centimétriques, les champs générés par les micro-aimants bénéficient de lois d'échelle conduisant à des gradients de champ considérablement amplifiés et donc à des forces magnétiques proportionnellement accrues. Le but de cette thèse était de démontrer le potentiel des Lab-on-Chips à base de micro-aimants. Les micro-aimants haute performance ont été intégrés avec succès dans les matériaux Lab-on-Chip les plus pertinents, y compris le polymère, le silicium et le papier. Nous avons étudié des fonctions sur puce basées sur l'interaction de structures mécaniques et de micro-aimants actionnés par des gradients magnétiques, des forces et des couples. Enfin, nous avons simulé, fabriqué et testé une variété de nouvelles puces couvrant un large champ d'applications telles que les études cellulaires-mécaniques, la magnétophorèse, la manipulation de fluides sur puce et le diagnostic auprès du patient. Nous concluons que les micro-aimants intégrés présentent un grand potentiel pour les applications de laboratoire sur puce et devraient être plus largement exploités. / Magnetic functions are nowadays ubiquitous in Lab-on-Chip systems. A surprising finding is that while Lab-on-Chip research focalizes on miniaturization, on-chip magnetic functions are usually driven by centimetric magnets. Compared to those centimetric magnets, fields generated by micro-magnets benefit from scaling laws leading to dramatically increased field gradients and thus proportionally improved magnetic forces. The aim of this thesis was to demonstrate the potential of micro-magnet based Lab-on-Chips. High-performance micro-magnets were successfully integrated in the most relevant Lab-on-Chip materials including polymer, silicon and paper. We studied on-chip functions based on the interaction of mechanic structures and micro-magnets actuated by magnetic gradients, forces and torque. Finally, we simulated, fabricated and tested a variety of new chips covering a large field of applications such as cell-mechanics studies, magnetophoresis, on-chip fluid handling and Point-of-Care diagnostics. We conclude that integrated micro-magnets show great potential for lab-on-chip applications and should be more widely exploited.
4

Tests de diagnostic immunologique rapides combinant des nanoparticules magnétiques et des micro-aimants structurés / Fast innovative immuno-assays exploiting magnetic nano-particle and structured micro-magnet arrays

Delshadi, Sarah 17 October 2017 (has links)
Cette thèse présente le développement de tests immunologiques innovants, rapides et sensibles combinant des nanoparticules superparamagnétiques (SPN) fonctionnalisées et des micro-aimants : nos immuno-essais magnétiques exploitent les forts gradients de champ magnétique de ces micro-aimants pour capturer les complexes immunologiques liés aux SPN. L’attraction magnétique est souvent utilisée en biotechnologies car elle peut générér des forces capables de capturer des molécules d’intérêt. Les immuno-essais sur billes utilisent habituellement des aimants centi- et millimétriques pour capturer des micro-particules. Réduire la taille des particules magnétiques est très intéressant pour réduire les cinétiques de réactions, tout en diminuant les phénomènes de sédimentation et d’agrégation. Cette réduction d’échelle des particules permet aussi d’augmenter la surface de réaction et ainsi d’augmenter la sensibilité des tests. Cependant les aimants millimétriques génèrent des gradients faibles qui capturent difficilement les SPN, trop mobiles. Les micro-aimants de l’Institut Néel génèrent des forts gradients locaux et ainsi des forces magnétiques importantes. Ces technologies innovantes sont utilisées dans cette thèse pour développer des immuno-essais rapides tirant profit de la réduction d’échelle des particules et des aimants, par rapport aux technologies commerciales.Dans un premier temps, nous avons développé un test immunologique magnétique (MagIA) colorimétrique, comme approche innovante du test ELISA. Nous avons réalisé une preuve de concept pour la détection d’anticorps dirigé contre l’ovalbumine et comparé les résultats avec ceux de tests ELISA. Le test MagIA optimisé présente une limite de détection et une zone dynamique similaires au test ELISA développé avec les mêmes réactifs biologiques. Les micro-aimants fabriqués selon la méthode de micro-magnetic imprinting sont intégrés à bas coût dans les micro-puits des plaques multi-puits ELISA, et permettent la capture efficace des complexes immunologiques couplés aux SPN. La méthode est générique est permet de réaliser des tests ELISA en 30 minutes avec le même équipement.Nous avons ensuite développé un test magnétique immunologique avec une détection fluorescente locale tirant profit des propriétés de capture locale des SPN sur les micro-aimants. Ce test permet la quantification de la molécule d’intérêt en à peine 15 minutes sans étape de lavage. Une preuve de concept réalisée sur la détection de l’anticorps anti-ovalbumine a été réalisée, avec des anticorps de détection fluorescents et des micro-aimants fabriqués selon la méthode de thermo-magnetic patterning. La mesure différentielle entre le signal fluorescent provenant des complexes immunologiques couplés aux SPN localisées sur les micro-aimants, et le signal non spécifique (à l’extérieur des micro-aimants) permet la quantification d’une molécule. Ce test MLFIA (magnetically localized FIA) possède des performances jusqu’à 100 fois meilleures que les tests ELISA standard, pour la détection d’anticorps anti-ovalbumine en PBS. Le test MLFIA a ensuite été transféré à la détection de paramètres cliniques tels que la protéine C réactive, l'ostéopontine, et les sérologies de la toxoplasmose (IgG et IgM). La comparaison des résultats avec des méthodes automatisées a montré d’excellentes corrélations. Le test MLFIA présente plusieurs avantages : il est versatile, compatible avec les milieux biologiques, utilise de faibles volumes et requiert peu d’énergie. Ces résultats ouvrent la voie à une nouvelle génération de tests immunologiques sensibles et nous développons désormais un lecteur miniature pour le diagnostic portable. / This thesis reports the development of innovative, sensitive and fast immunoassays combining functionalized superparamagnetic nanoparticles (SPN) and micro-magnets. Our magnetic immunoassays exploit high gradients generated by micro-magnets to capture immune-complexes captured on SPN. Magnetic attraction is widely used in biotechnology, because it provides long-range forces able to capture molecules of interest. Bead-based immunoassays use common centimetre-scale magnets to attract micro-particles. Those magnets generate low magnetic gradients and struggle to capture superparamagnetic nano-particles, which are too small and mobile to be efficiently trapped. Down-scaling the size of magnetic particles is very interesting since it allows diffusion-based transport to perform faster reactions, while avoiding particle sedimentation and aggregation. Furthermore, it increases the reaction surface, which improves the sensitivity of immunoassays. Thanks to the scaling law effects micro-magnets from Institut Néel generate high local gradients and therefore large magnetic volume forces: we use this innovative technology to develop fast immuno-assays that take advantage of a radical size reduction, compared to commercial technology.We first developed a colorimetric magnetic immunoassay (MagIA) as a new approach to standard ELISA. A proof-of-concept based on colorimetric quantification of anti-ovalbumin antibody in buffer was performed and compared with conventional ELISAs. After optimization, MagIA exhibits a limit of detection and dynamic range similar to ELISAs developed using the same biochemical tools. Micromagnets made by the micro-magnetic imprinting method can be fully integrated in multi-well plates at low cost, allowing the efficient capture of immuno-complexes carried by SPNs. The method is generic and performs magnetic ELISA in 30 min.We then developed a magnetically localized fluorescent immunoassay (MLFIA) exploiting the local capture of SPN on micro-magnets. The differential measurement of fluorescence localized on and besides micro-magnet arrays allows the detection and quantification of a molecule in only 15 minutes without fluid handling. We present a proof of concept based on the detection of monoclonal antibody anti-ovalbumin. Functionalized nanoparticles are incubated with fluorescent detection antibody and the sample containing the molecule to be detected. After a single incubation step, the nanoparticles are captured on micro-magnets made by thermo-magnetic patterning. Fluorescence is then read under a microscope. Differential measurement between the signal from the immunological complex localised on the micro-magnets and the non-specific signal localised besides micro-magnets allows the quantification of mAb anti-OVA. The performance of MLFIA was compared with conventional ELISA and exhibits a limit of detection up to 100 times better for anti-OVA mAb in PBS. For further validation, MLFIA was used to measure clinical parameters: we developed a sandwich assay to detect C-reactive protein, and a serology for Toxoplasma gondii immunoglobulin G and M or osteopontin in human samples. Comparisons with data obtained with routine clinical automatized methods show excellent correlation. Our MLFIA technology presents several key advantages: it is compatible with biological media (serum, plasma), uses small volumes and requires little energy. It also is versatile and thus can be used to detect any antigen or antibody in complex media. We are currently developing a portable prototype for point-of-care diagnostics. The results will open the way to a new generation of sensitive immunological lab-on-chip.
5

Développement et caractérisation avancée de matériaux magnétiques durs de haute performance / Development and advanced characterization of high performance hard magnetic materials

Ponomareva, Svetlana 30 May 2017 (has links)
L'auteur n'a pas fourni de résumé en français / Nowadays in medicine and biotechnology a wide range of applications involves magnetic micro/nano-object manipulation including remote control of magnetic beads, trapping of drug vectors, magnetic separation of labelled cells and so on. Handling and positioning magnetic particles and elements functionalized with these particles has greatly benefited from advances in microfabrication. Indeed reduction in size of the magnet while maintaining its field strength increases the field gradient. In this context, arrays made of permanent micromagnets are good candidates for magnetic handling devices. They are autonomous, suitable for integration into complex systems and their magnetic action is restricted to the region of interest.In this thesis we have elaborated an original approach based on AFM and MFM for quantitative study of the magnetic force and associated force gradients induced by TMP micromagnet array on an individual magnetic micro/nano-object. For this purpose, we have fabricated smart MFM probes where a single magnetic (sub)micronic sphere was fixed at the tip apex of a non-magnetic probe thanks to a dual beam FIB/SEM machine equipped with a micromanipulator.Scanning Force Microscopy conducted with such probes, the so-called Magnetic Particle Scanning Force Microscopy (MPSFM) was employed for 3D mapping of TMP micromagnets. This procedure involves two main aspects: (i) the quantification of magnetic interaction between micromagnet array and attached microsphere according to the distance between them and (ii) the complementary information about micromagnet array structure. The main advantage of MPSFM is the use of a probe with known magnetization and magnetic volume that in combination with modelling allows interpreting the results ably.We conducted MPSFM on TMP sample with two types of microparticle probes: with superparamagnetic and NdFeB microspheres. The measurements carried out with superparamagnetic microsphere probes reveal attractive forces (up to few tens of nN) while MFM maps obtained with NdFeB microsphere probes reveal attractive and repulsive forces (up to one hundred of nN) for which the nature of interaction is defined by superposition of microsphere and micromagnet array magnetizations. The derived force and its gradient from MFM measurements are in agreement with experiments on microparticle trapping confirming that the strongest magnetic interaction is observed above the TMP sample interfaces, between the areas with opposite magnetization. Thanks to 3D MFM maps, we demonstrated that intensity of magnetic signal decays fast with the distance and depends on micromagnet array and microsphere properties.Besides the magnetic interaction quantification, we obtained new information relevant to TMP sample structure: we observed and quantified the local magnetic roughness and associated fluctuations, in particular in zones of reversed magnetization. The variation of detected signal can reach the same order of magnitude as the signal above the micromagnet interfaces. These results complete the experiments on particle trapping explaining why magnetic microparticles are captured not only above the interfaces, but also inside the zones of reversed magnetization.Quantitative measurements of the force acting on a single (sub)microsphere associated to the modelling approach improve the understanding of processes involved in handling of magnetic objects in microfluidic devices. This could be employed to optimize the parameters of sorting devices and to define the quantity of magnetic nanoparticles required for labelling of biological cells according to their size. More generally these experimental and modelling approaches of magnetic interaction can meet a high interest in all sorts of applications where a well-known and controlled non-contact interaction is required at micro and nano-scale.

Page generated in 0.0531 seconds