• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • Tagged with
  • 31
  • 31
  • 31
  • 17
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High-Fidelity Simulations of Transitional Flow Over Pitching Airfoils

Garmann, Daniel J. 03 August 2010 (has links)
No description available.
12

Design, testing, and performance of a hybrid micro vehicle - the Hopping Rotochute

Beyer, Eric W. 04 May 2009 (has links)
A new hybrid micro vehicle, called the Hopping Rotochute, was developed to robustly explore environments with rough terrain while minimizing energy consumption over extended periods of time. Unlike traditional robots, the Hopping Rotochute maneuvers through complex terrain by hopping over or through impeding obstacles. A small coaxial rotor system provides the necessary lift while a movable internal mass controls the direction of travel. In addition, the low mass center and egg-like shaped body creates a means to passively reorient the vehicle to an upright attitude when in ground contact while protecting the rotating components. The design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance are documented. The aerodynamic, mechanical, and electrical design of the prototype is outlined which were driven by the operational requirements assigned to the vehicle. The aerodynamic characteristics of the rotor system as well as the damping characteristics of the foam base are given based on experimental results using a rotor test stand and a drop test stand respectively. Experimental flight testing results using the prototype are outlined which demonstrate that all design and operational requirements are satisfied. A dynamic model associated with the Hopping Rotochute is then developed including a soft contact model which estimates the forces and moments on the vehicle during ground contact. A comparison between the vehicle's motion measured using a motion capture system and the simulation results are presented to determine the validity of the experimentally-tuned dynamic model. Using this validated simulation model, key parameters such as system weight, rotor speed profile, internal mass weight and location, as well as battery capacity are varied to explore the flight performance characteristics. The sensitivity of the hopping rotochute to atmospheric winds is also investigated as well as the ability of the device to perform trajectory shaping.
13

Islands of Fitness Compact Genetic Algorithm for Rapid In-Flight Control Learning in a Flapping-Wing Micro Air Vehicle: A Search Space Reduction Approach

Duncan, Kayleigh E. January 2019 (has links)
No description available.
14

Obstacle Avoidance, Visual Automatic Target Tracking, and Task Allocation for Small Unmanned Air Vehicles

Saunders, Jeffery Brian 10 July 2009 (has links) (PDF)
Recent developments in autopilot technology have increased the potential use of micro air vehicles (MAVs). As the number of applications increase, the demand on MAVs to operate autonomously in any scenario increases. Currently, MAVs cannot reliably fly in cluttered environments because of the difficulty to detect and avoid obstacles. The main contribution of this research is to offer obstacle detection and avoidance strategies using laser rangers and cameras coupled with computer vision processing. In addition, we explore methods of visual target tracking and task allocation. Utilizing a laser ranger, we develop a dynamic geometric guidance strategy to generate paths around detected obstacles. The strategy overrides a waypoint planner in the presence of pop-up-obstacles. We develop a second guidance strategy that oscillates the MAV around the waypoint path and guarantees obstacle detection and avoidance. Both rely on a laser ranger for obstacles detection and are demonstrated in simulation and in flight tests. Utilizing EO/IR cameras, we develop two guidance strategies based on movement of obstacles in the camera field-of-view to maneuver the MAV around pop-up obstacles. Vision processing available on a ground station provides range and bearing to nearby obstacles. The first guidance law is derived for single obstacle avoidance and pushes the obstacle to the edge of the camera field-of-view causing the vehicle to avoid a collision. The second guidance law is derived for two obstacles and balances the obstacles on opposite edges of the camera field-of-view, maneuvering between the obstacles. The guidance strategies are demonstrated in simulation and flight tests. This research also addresses the problem of tracking a ground based target with a fixed camera pointing out the wing of a MAV that is subjected to constant wind. Rather than planning explicit trajectories for the vehicle, a visual feedback guidance strategy is developed that maintains the target in the field-of-view of the camera. We show that under ideal conditions, the resulting flight paths are optimal elliptical trajectories if the target is forced to the center of the image plane. Using simulation and flight tests, the resulting algorithm is shown to be robust with respect to gusts and vehicle modeling errors. Lastly, we develop a method of a priori collision avoidance in assigning multiple tasks to cooperative unmanned air vehicles (UAV). The problem is posed as a combinatorial optimization problem. A branch and bound tree search algorithm is implemented to find a feasible solution using a cost function integrating distance traveled and proximity to other UAVs. The results demonstrate that the resulting path is near optimal with respect to distance traveled and includes a significant increase in expected proximity distance to other UAVs. The algorithm runs in less than a tenth of a second allowing on-the-fly replanning.
15

Surrogate Modeling for Optimizing the Wing Design of a Hawk Moth Inspired Flapping-Wing Micro Air Vehicle

Huang, Wei 27 January 2023 (has links)
No description available.
16

Error-State Estimation and Control for a Multirotor UAV Landing on a Moving Vehicle

Farrell, Michael David 01 February 2020 (has links)
Though multirotor unmanned aerial vehicles (UAVs) have become widely used during the past decade, challenges in autonomy have prevented their widespread use when moving vehicles act as their base stations. Emerging use cases, including maritime surveillance, package delivery and convoy support, require UAVs to autonomously operate in this scenario. This thesis presents improved solutions to both the state estimation and control problems that must be solved to enable robust, autonomous landing of multirotor UAVs onto moving vehicles.Current state-of-the-art UAV landing systems depend on the detection of visual fiducial markers placed on the landing target vehicle. However, in challenging conditions, such as poor lighting, occlusion, or extreme motion, these fiducial markers may be undected for significant periods of time. This thesis demonstrates a state estimation algorithm that tracks and estimates the locations of unknown visual features on the target vehicle. Experimental results show that this method significantly improves the estimation of the state of the target vehicle while the fiducial marker is not detected.This thesis also describes an improved control scheme that enables a multirotor UAV to accurately track a time-dependent trajectory. Rooted in Lie theory, this controller computes the optimal control signal based on an error-state formulation of the UAV dynamics. Simulation and hardware experiments of this control scheme show its accuracy and computational efficiency, making it a viable solution for use in a robust landing system.
17

An Improved Lightweight Micro Scale Vehicle Capable of Aerial and Terrestrial Locomotion

Polakowski, Matthew Ryan 26 June 2012 (has links)
No description available.
18

Shape and Structural Optimization of Flapping Wings

Stewart, Eric C. 11 January 2014 (has links)
This dissertation presents shape and structural optimization studies on flapping wings for micro air vehicles. The design space of the optimization includes the wing planform and the structural properties that are relevant to the wing model being analyzed. The planform design is parameterized using a novel technique called modified Zimmerman, which extends the concept of Zimmerman planforms to include four ellipses rather than two. Three wing types are considered: rigid, plate-like deformable, and membrane. The rigid wing requires no structural design variables. The structural design variables for the plate-like wing are the thickness distribution polynomial coefficients. The structural variables for the membrane wing control the in-plane distributed forces which modulate the structural deformation of the wing. The rigid wing optimization is performed using the modified Zimmerman method to describe the wing. A quasi-steady aerodynamics model is used to calculate the thrust and input power required during the flapping cycle. An assumed inflow model is derived based on lifting-line theory and is used to better approximate the effects of the induced drag on the wing. A multi-objective optimization approach is used since more than one aspect is considered in flapping wing design. The the epsilon-constraint approach is used to calculate the Pareto optimal solutions that maximize the cycle-average thrust while minimizing the peak input power and the wing mass. An aeroelastic model is derived to calculate the aerodynamic performance and the structural response of the deformable wings. A linearized unsteady vortex lattice method is tightly coupled to a linear finite element model. The model is cost effective and the steady-state solution is solved by inverting a matrix. The aeroelastic model is used to maximize the thrust produced over one flapping cycle while minimizing the input power. / Ph. D.
19

Lift Distributions On Low Aspect Ratio Wings At Low Reynolds Numbers

Sathaye, Sagar Sanjeev 27 April 2004 (has links)
The aerodynamic performance of low aspect ratio wings at low Reynolds numbers applicable to micro air vehicle design was studied in this thesis. There is an overall lack of data for this low Reynolds number range, particularly concerning details of local flow behavior along the span. Experiments were conducted to measure the local pressure distributions on a wing at various spanwise locations in a Reynolds number range 30000 < Re < 90000. The model wing consisted of numerous wing sections and had a rectangular planform with NACA0012 airfoil shape with aspect ratio of one. One wing section, with pressure ports at various chordwise locations, was placed at different spanwise locations on a wing to effectively obtain the local pressure information. Integration of the pressure distributions yielded the local lift coefficients. Comparison of the local lift distributions to optimal elliptic lift distribution was conducted. This comparison showed a sharply peaked lift distribution near the wing tip resulting in a drastic deviation from the equivalent elliptic lift distributions predicted by the finite wing theory. The local lift distributions were further analyzed to determine the total lift coefficients vs angle of attack curves, span efficiency factors and the induced drag coefficients. Measured span efficiency factors, which were lower than predictions of the elliptic wing theory, can be understood by studying deviations of measured lift from the elliptic lift distribution. We conclude that elliptic wing theory is not sufficient to predict these aerodynamic performance parameters. Overall, these local measurements provided a better understanding of the low Reynolds number aerodynamics of the low aspect ratio wings.
20

Du micro véhicule aérien au nano véhicule aérien : études théoriques et expérimentales sur un insecte artificiel à ailes battantes / Micro air vehicle to nano air vehicle : theoretical and experimental studies of an artificial flapping insect

Doan, Le Anh 01 March 2019 (has links)
Au cours des dernières décennies, la possibilité d’exploiter les capacités de vol exceptionnelles des insectes a été à l’origine de nombreuses recherches sur l’élaboration de nano-véhicules aériens (NAVs) à ailes battantes. Cependant, lors de la conception de tels prototypes, les chercheurs doivent analyser une vaste gamme de solutions liées à la grande diversité des insectes volants pour identifier les fonctionnalités et les paramètres adaptés à leurs besoins. Afin d’alléger cette tâche, le but de ce travail est de développer un outil permettant à la fois d’examiner le comportement cinématique et énergétique d’un nano-véhicule aérien à ailes flexibles résonantes, et donc d'évaluer son efficacité. Cet objectif reste néanmoins extrêmement difficile à atteindre car il concerne des objets de très petites tailles. Aussi, nous avons choisi tout d’abord de travailler sur un micro-véhicule aérien (MAV) à ailes battantes. Il s’agit avant tout de valider l’outil de modélisation à travers une comparaison systématique des simulations avec des résultats expérimentaux effectués lors de l’actionnement des ailes, puis au cours du décollage et du vol stationnaire du prototype. Une partie des connaissances et expériences acquises pourra ensuite être utilisée afin de mieux comprendre le fonctionnement et identifier la distribution d'énergie au sein du NAV. Bien que les deux véhicules s’inspirent directement de la cinématique des ailes d'insectes, les mécanismes d'actionnement des ailes artificielles des deux prototypes ne sont pas les mêmes en raison de la différence de taille. Comme le NAV est plus petit, ces ailes ont un mouvement de battement à une fréquence plus élevée que celles du MAV, à l’instar de ce qui existe dans la nature. En conséquence, lorsque l’on passe du MAV au NAV, le mécanisme d’actionnement des ailes doit être adapté et cette différence nécessite d’une part, de revoir la conception, l'approche de modélisation et le processus d'optimisation, et d’autre part, de modifier le procédé de fabrication. Une fois ces améliorations apportées, nous avons obtenu des résultats de simulations en accord avec les tests expérimentaux. Le principal résultat de ce travail concerne l’obtention pour les deux prototypes, le MAV et le NAV, d’une cinématique appropriée des ailes, qui conduit à une force de portance équivalente au poids. Nous avons d’ailleurs démontré que le MAV était capable de décoller et d’avoir un vol stationnaire stable selon l’axe vertical. En tirant parti des modèles basés sur le langage Bond Graph, il est également possible d'évaluer les performances énergétiques de ces prototypes en fonction de la dynamique de l'aile. En conclusion, cette étude contribue à la définition des paramètres essentiels à prendre en compte lors de la conception et l'optimisation énergétique de micro et nano-véhicules à ailes battantes. / In recent decades, the prospect of exploiting the exceptional flying capacities of insects has prompted much research on the elaboration of flapping-wing nano air vehicles (FWNAV). However, when designing such a prototype, designers have to wade through a vast array of design solutions that reflects the wide variety of flying insects to identify the correct combination of parameters to meet their requirements. To alleviate this burden, the purpose of this work is to develop a suitable tool to analyze the kinematic and power behavior of a resonant flexible-wing nano air vehicle. The key issue is evaluating its efficiency. However, this ultimate objective is extremely challenging as it is applied to the smallest flexible FWNAV. However, in this work, we worked first with a flapping-wing micro air vehicle (FWMAV) in order to have a tool for the simulation and experimentation of wing actuation, take-off and hovering. Some of the knowledge and experience acquired will then be transferred to better understand how our FWNAV works and identify the energy, power distribution. Although both of the vehicles employ the insect wing kinematics, their wings actuation mechanisms are not the same due to their sizes difference. Since the FWNAV is smaller, their wings flap at a higher frequency than the FWMAV as inspired by nature. As a consequence, from MAV to NAV, the wing actuation mechanism must be changed. Throughout this work, it can be seen clearly that this difference affects the whole vehicles development including the design, the manufacturing method, the modeling approach and the optimizing process. It has been demonstrated that the simulations are in good correlation with the experimental tests. The main result of this work is the proper wing kinematics of both FWMAV and FWNAV which leads to a lift to the weight ratio bigger and equal to one respectively. The FWMAV is even success to take-off and vertically stable hover. Moreover, taking advantage of the Bond Graph-based models, the evolution power according to the wing dynamic and the efficiency of the subsystem can be evaluated. In conclusion, this study shows the key parameters for designing and optimizing efficiency and the lift generated for two flapping wing vehicles in different size regimes.

Page generated in 0.0615 seconds