• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Bounded-Error Target State Estimation Using Redundant States

Covello, James Anthony January 2006 (has links)
When the primary measurement sensor is passive in nature--by which we mean that it does not directly measure range or range rate--there are well-documented challenges for target state estimation. Most estimation schemes rely on variations of the Extended Kalman Filter (EKF), which, in certain situations, suffer from divergence and/or covariance collapse. For this and other reasons, we believe that the Kalman filter is fundamentally ill-suited to the problems that are inherent in target state estimation using passive sensors. As an alternative, we propose a bounded-error (or set-membership) approach to the target state estimation problem. Such estimators are nearly as old as the Kalman filter, but have enjoyed much less attention. In this study we develop a practical estimator that bounds the target states, and apply it to the two-dimensional case of a submarine tracking a surface vessel, which is commonly referred to as Target Motion Analysis (TMA). The estimator is robust in the sense that the true target state does not escape the determined bounds; and the estimator is not unduly pessimistic in the sense that the bounds are not wider than the situation dictates. The estimator is--as is the problem itself--nonlinear and geometric in nature. In part, the simplicity of the estimator is maintained by using redundant states to parameterize the target's velocity. These redundant states also simplify the incorporation of other measurements that are frequently available to the system. The estimator's performance is assessed in a series of simulations and the results are analyzed. Extensions of the algorithm are considered.
2

Error-State Estimation and Control for a Multirotor UAV Landing on a Moving Vehicle

Farrell, Michael David 01 February 2020 (has links)
Though multirotor unmanned aerial vehicles (UAVs) have become widely used during the past decade, challenges in autonomy have prevented their widespread use when moving vehicles act as their base stations. Emerging use cases, including maritime surveillance, package delivery and convoy support, require UAVs to autonomously operate in this scenario. This thesis presents improved solutions to both the state estimation and control problems that must be solved to enable robust, autonomous landing of multirotor UAVs onto moving vehicles.Current state-of-the-art UAV landing systems depend on the detection of visual fiducial markers placed on the landing target vehicle. However, in challenging conditions, such as poor lighting, occlusion, or extreme motion, these fiducial markers may be undected for significant periods of time. This thesis demonstrates a state estimation algorithm that tracks and estimates the locations of unknown visual features on the target vehicle. Experimental results show that this method significantly improves the estimation of the state of the target vehicle while the fiducial marker is not detected.This thesis also describes an improved control scheme that enables a multirotor UAV to accurately track a time-dependent trajectory. Rooted in Lie theory, this controller computes the optimal control signal based on an error-state formulation of the UAV dynamics. Simulation and hardware experiments of this control scheme show its accuracy and computational efficiency, making it a viable solution for use in a robust landing system.
3

Attitude Navigation using a Sigma-Point Kalman Filter in an Error State Formulation

Diamantidis, Periklis-Konstantinos January 2017 (has links)
Kalman filtering is a well-established method for fusing sensor data in order to accuratelyestimate unknown variables. Recently, the unscented Kalman filter (UKF) has beenused due to its ability to propagate the first and second moments of the probability distribution of an estimated state through a non-linear transformation. The design of ageneric algorithm which implements this filter occupies the first part of this thesis. The generality and functionality of the filter were tested on a toy example and the results are within machine accuracy when compared to those of an equivalent C++ implementation.Application of this filter to the attitude navigation problem becomes non-trivial when coupled to quaternions. Challenges present include the non-commutation of rotations and the dimensionality difference between quaternions and the degrees of freedom of the motion. The second part of this thesis deals with the formulation of the UKF in the quaternion space. This was achieved by implementing an error-state formulation of the process model, bounding estimation in the infinitesimal space and thus de-coupling rotations from non-commutation and bridging the dimensionality discrepancy of quaternions and their respective covariances.The attitude navigation algorithm was then tested using an IMU and a magnetometer.Results show a bounded estimation error which settles to around 1 degree. A detailed look of the filter mechanization process was also presented showing expected behavior for estimation of the initial attitude with error tolerance of 1 mdeg. The structure and design of the proposed formulation allows for trivially incorporating other sensors inthe estimation process and more intricate modelling of the stochastic processes present,potentially leading to greater estimation accuracy. / Kalman filtrering är en vältablerad metod for att sammanväga sensordata för att erhålla noggranna estimat av okända variabler. Nyligen har den typ av kalman filter som kallas unscented Kalman filter (UKF) ökat i populäritet pa grund av dess förmåga att propagera de första och andra momenten för sannolikhetsfördelningen för ett estimera tillstånd genom en ickelinjär transformation. Designen av en generisk algoritm som implementerar denna typ av filter upptar den första delen av denna avhandling. Generaliteten och funktionaliteten för detta filter testades på ett minimalt exempel och resultaten var identiska med de för en ekvivalent C++-implementation till den noggrannhet som tillåts av den nita maskinprecisionen. Användandet av detta filter för attitydnavigering blir icke-trivialt när det anvands forkvaternioner. De utmaningar som uppstar inkluderar att rotationer inte kommuterar och att de finns en skillnad i dimensionalitet mellan kvaternioner och antalet frihetsgrader i rörelsen. Den andra delen av denna avhandling behandlar formuleringen av ett UKF för ett tillstånd som inkluderar en kvaternion. Detta gjordes genom att implementera en så kallad error state-formulering av processmodellen, vilken begränsar estimeringen till ett innitesimalt tillstånd och därigenom undviker problemen med att kvaternionmultiplikation inte kommuterar och överbryggar skillnaden i dimensionalitet hos kvaternioner och deras motsvarande vinkelosäkerheter.Attitydnavigeringen testades sedan med hjälp av en IMU och en magnetometer.Resultaten visade ett begränsat estimeringsfel som ställer in sig kring 1 grad. Strukturen och designen av den föreslagna formuleringen möjliggör på ett rattframt satt tillägg av andra sensorer i estimeringsprocessen och mer detaljerad modellering av de stokastiska processerna, vilket potentiellt leder till högre estimering noggrannhet.
4

Implementation of Bolt Detection and Visual-Inertial Localization Algorithm for Tightening Tool on SoC FPGA / Implementering av bultdetektering och visuell tröghetslokaliseringsalgoritm för åtdragningsverktyg på SoC FPGA

Al Hafiz, Muhammad Ihsan January 2023 (has links)
With the emergence of Industry 4.0, there is a pronounced emphasis on the necessity for enhanced flexibility in assembly processes. In the domain of bolt-tightening, this transition is evident. Tools are now required to navigate a variety of bolts and unpredictable tightening methodologies. Each bolt, possessing distinct tightening parameters, necessitates a specific sequence to prevent issues like bolt cross-talk or unbalanced force. This thesis introduces an approach that integrates advanced computing techniques with machine learning to address these challenges in the tightening areas. The primary objective is to offer edge computation for bolt detection and tightening tools' precise localization. It is realized by leveraging visual-inertial data, all encapsulated within a System-on-Chip (SoC) Field Programmable Gate Array (FPGA). The chosen approach combines visual information and motion detection, enabling tools to quickly and precisely do the localization of the tool. All the computing is done inside the SoC FPGA. The key element for identifying different bolts is the YOLOv3-Tiny-3L model, run using the Deep-learning Processor Unit (DPU) that is implemented in the FPGA. In parallel, the thesis employs the Error-State Extended Kalman Filter (ESEKF) algorithm to fuse the visual and motion data effectively. The ESEKF is accelerated via a full implementation in Register Transfer Level (RTL) in the FPGA fabric. We examined the empirical outcomes and found that the visual-inertial localization exhibited a Root Mean Square Error (RMSE) position of 39.69 mm and a standard deviation of 9.9 mm. The precision in orientation determination yields a mean error of 4.8 degrees, offset by a standard deviation of 5.39 degrees. Notably, the entire computational process, from the initial bolt detection to its final localization, is executed in 113.1 milliseconds. This thesis articulates the feasibility of executing bolt detection and visual-inertial localization using edge computing within the SoC FPGA framework. The computation trajectory is significantly streamlined by harnessing the adaptability of programmable logic within the FPGA. This evolution signifies a step towards realizing a more adaptable and error-resistant bolt-tightening procedure in industrial areas. / Med framväxten av Industry 4.0, finns det en uttalad betoning på nödvändigheten av ökad flexibilitet i monteringsprocesser. Inom området bultåtdragning är denna övergång tydlig. Verktyg krävs nu för att navigera i en mängd olika bultar och oförutsägbara åtdragningsmetoder. Varje bult, som har distinkta åtdragningsparametrar, kräver en specifik sekvens för att förhindra problem som bultöverhörning eller obalanserad kraft. Detta examensarbete introducerar ett tillvägagångssätt som integrerar avancerade datortekniker med maskininlärning för att hantera dessa utmaningar i skärpningsområdena. Det primära målet är att erbjuda kantberäkning för bultdetektering och åtdragningsverktygs exakta lokalisering. Det realiseras genom att utnyttja visuella tröghetsdata, allt inkapslat i en System-on-Chip (SoC) Field Programmable Gate Array (FPGA). Det valda tillvägagångssättet kombinerar visuell information och rörelsedetektering, vilket gör det möjligt för verktyg att snabbt och exakt lokalisera verktyget. All beräkning sker inuti SoC FPGA. Nyckelelementet för att identifiera olika bultar är YOLOv3-Tiny-3L-modellen, som körs med hjälp av Deep-learning Processor Unit (DPU) som är implementerad i FPGA. Parallellt använder avhandlingen algoritmen Error-State Extended Kalman Filter (ESEKF) för att effektivt sammansmälta visuella data och rörelsedata. ESEKF accelereras via en fullständig implementering i Register Transfer Level (RTL) i FPGA-strukturen. Vi undersökte de empiriska resultaten och fann att den visuella tröghetslokaliseringen uppvisade en Root Mean Square Error (RMSE) position på 39,69 mm och en standardavvikelse på 9,9 mm. Precisionen i orienteringsbestämningen ger ett medelfel på 4,8 grader, kompenserat av en standardavvikelse på 5,39 grader. Noterbart är att hela beräkningsprocessen, från den första bultdetekteringen till dess slutliga lokalisering, exekveras på 113,1 millisekunder. Denna avhandling artikulerar möjligheten att utföra bultdetektering och visuell tröghetslokalisering med hjälp av kantberäkning inom SoC FPGA-ramverket. Beräkningsbanan är avsevärt effektiviserad genom att utnyttja anpassningsförmågan hos programmerbar logik inom FPGA. Denna utveckling innebär ett steg mot att förverkliga en mer anpassningsbar och felbeständig skruvdragningsprocedur i industriområden.
5

Relative Navigation of Micro Air Vehicles in GPS-Degraded Environments

Wheeler, David Orton 01 December 2017 (has links)
Most micro air vehicles rely heavily on reliable GPS measurements for proper estimation and control, and therefore struggle in GPS-degraded environments. When GPS is not available, the global position and heading of the vehicle is unobservable. This dissertation establishes the theoretical and practical advantages of a relative navigation framework for MAV navigation in GPS-degraded environments. This dissertation explores how the consistency, accuracy, and stability of current navigation approaches degrade during prolonged GPS dropout and in the presence of heading uncertainty. Relative navigation (RN) is presented as an alternative approach that maintains observability by working with respect to a local coordinate frame. RN is compared with several current estimation approaches in a simulation environment and in hardware experiments. While still subject to global drift, RN is shown to produce consistent state estimates and stable control. Estimating relative states requires unique modifications to current estimation approaches. This dissertation further provides a tutorial exposition of the relative multiplicative extended Kalman filter, presenting how to properly ensure observable state estimation while maintaining consistency. The filter is derived using both inertial and body-fixed state definitions and dynamics. Finally, this dissertation presents a series of prolonged flight tests, demonstrating the effectiveness of the relative navigation approach for autonomous GPS-degraded MAV navigation in varied, unknown environments. The system is shown to utilize a variety of vision sensors, work indoors and outdoors, run in real-time with onboard processing, and not require special tuning for particular sensors or environments. Despite leveraging off-the-shelf sensors and algorithms, the flight tests demonstrate stable front-end performance with low drift. The flight tests also demonstrate the onboard generation of a globally consistent, metric, and localized map by identifying and incorporating loop-closure constraints and intermittent GPS measurements. With this map, mission objectives are shown to be autonomously completed.
6

Enabling Autonomous Operation of Micro Aerial Vehicles Through GPS to GPS-Denied Transitions

Jackson, James Scott 11 November 2019 (has links)
Micro aerial vehicles and other autonomous systems have the potential to truly transform life as we know it, however much of the potential of autonomous systems remains unrealized because reliable navigation is still an unsolved problem with significant challenges. This dissertation presents solutions to many aspects of autonomous navigation. First, it presents ROSflight, a software and hardware architure that allows for rapid prototyping and experimentation of autonomy algorithms on MAVs with lightweight, efficient flight control. Next, this dissertation presents improvments to the state-of-the-art in optimal control of quadrotors by utilizing the error-state formulation frequently utilized in state estimation. It is shown that performing optimal control directly over the error-state results in a vastly more computationally efficient system than competing methods while also dealing with the non-vector rotation components of the state in a principled way. In addition, real-time robust flight planning is considered with a method to navigate cluttered, potentially unknown scenarios with real-time obstacle avoidance. Robust state estimation is a critical component to reliable operation, and this dissertation focuses on improving the robustness of visual-inertial state estimation in a filtering framework by extending the state-of-the-art to include better modeling and sensor fusion. Further, this dissertation takes concepts from the visual-inertial estimation community and applies it to tightly-coupled GNSS, visual-inertial state estimation. This method is shown to demonstrate significantly more reliable state estimation than visual-inertial or GNSS-inertial state estimation alone in a hardware experiment through a GNSS-GNSS denied transition flying under a building and back out into open sky. Finally, this dissertation explores a novel method to combine measurements from multiple agents into a coherent map. Traditional approaches to this problem attempt to solve for the position of multiple agents at specific times in their trajectories. This dissertation instead attempts to solve this problem in a relative context, resulting in a much more robust approach that is able to handle much greater intial error than traditional approaches.

Page generated in 0.073 seconds