• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Liquid Marbles

Khalil, Kareem 12 1900 (has links)
Granulation, the process of formation of granules from a combination of base powders and binder liquids, has been a subject of research for almost 50 years, studied extensively for its vast applications, primarily to the pharmaceutical industry sector. The principal aim of granulation is to form granules comprised of the active pharmaceutical ingredients (API’s), which have more desirable handling and flowability properties than raw powders. It is also essential to ensure an even distribution of active ingredients within a tablet with the goal of achieving time-controlled release of drugs. Due to the product-specific nature of the industry, however, data is largely empirical [1]. For example, the raw powders used can vary in size by two orders of magnitude with narrow or broad size distributions. The physical properties of the binder liquids can also vary significantly depending on the powder properties and required granule size. Some significant progress has been made to better our understanding of the overall granulation process [1] and it is widely accepted that the initial nucleation / wetting stage, when the binder liquid first wets the powders, is key to the whole process. As such, many experimental studies have been conducted in attempt to elucidate the physics of this first stage [1], with two main mechanisms being observed – classified by Ivenson [1] as the “Traditional description” and the “Modern Approach”. See Figure 1 for a graphical definition of these two mechanisms. Recent studies have focused on the latter approach [1] and a new, exciting development in this field is the Liquid Marble. This interesting formation occurs when a liquid droplet interacts with a hydrophobic (or superhydrophobic) powder. The droplet can become encased in the powder, which essentially provides a protective “shell” or “jacket” for the liquid inside [2]. The liquid inside is then isolated from contact with other solids or liquids and has some fascinating physical properties, which will be described later on. The main potential use for these liquid marbles appears to be for the formation of novel, hollow granules [3], which may have desirable properties in specific pharmaceutical applications (e.g. respiratory devices). They have also been shown to be a highly effectively means of water recovery and potentially as micro-transporters and micro-reactors [4]. However, many studies in the literature are essentially proof-of-concept approaches for applications and a systematic study of the dynamics of the marble formation and the first interactions of the liquid droplet with the powder is lacking. This is the motivation for this research project, where we aim to provide such information from an experimental study of drop impact onto hydrophobic powders with the use of high-speed imaging.
2

Microfluidique diphasique accordable / Tunable diphasic microfluidic

Tarchichi, Nathalie 18 April 2013 (has links)
Depuis ces dernières années, il y a eu augmentation de l’effort pour le développement des systèmes microfluidiques dédiésà la dispersion d’une phase fluide dans une autre phase fluide immiscible. Les gouttelettes ou les bulles résultantes ont de nombreuses applications dans des diverses domaines (photonique, chimique, biologique...). Pour la plupart de ces applications, il est primordial de contrôler la taille et la forme de ces gouttelettes/bulles, paramètres qui influencent directement le comportement ou la réponse du système. Notre but consiste ainsi à générer des gouttelettes de taille unique (mono-dispersées) et contrôlable pour produire des structures accordables. Nous analysons aussi leurs mécanismes de formation et étudions les paramètres qui influent sur leur taille et leur forme. Dans le présent travail, la génération de gouttelettes est réalisée en utilisant une intersection entre deux microcanaux (jonction en T) où leur taille est directement liée à la géométrie. Dans cette configuration, il existe trois régimes connus de génération de gouttelettes qui sont les régimes de dripping, squeezing et jetting. Nous nous sommes particulièrement intéressés à l’étude du régime dripping car il assure la génération de gouttelettes ayant une taille plus petite que celle obtenue avec les autres régimes. Les expériences et les études théoriques ont montré que le diamètre des gouttelettes diminue quand la largeur des canaux diminue, quand la vitesse de la phase continue augmente et quand la vitesse de la phase dispersée diminue. De plus, nous avons pu mettre en évidence un nouveau régime de génération de gouttelettes pour lequel les gouttelettes générées ont un diamètre constant, indépendamment des vitesses des phases continue et dispersée, et qui ne dépend que de la géométrie des canaux. Nous avons appelé ce nouveau régime le régime “balloon”. Nous avons enfin montré l’intérêt de l’accordabilité des systèmes microfluidiques en optique et en acoustique. Ainsi, nous avons montré que la période du réseau de diffraction optique est facilement modifiable en contrôlant les paramètres de génération de bulles. De même, nous avons pu voir que la réponse acoustique est liée `a la résonance des bulles dans le milieu liquide. Cette réponse est une fonction du diamètre des bulles générées. Enfin, nous proposons l’utilisation du système microfluidique en électronique pour produire des capacités variables, ouvrant la voie à des nouvelles fonctionnalités pour la microfluidique diphasique. / Since the past few years, there has been an increasing effort in developing microfluidic devices for dispersing one fluid phase in another immiscible fluid phase. Micro fluidic bubbles or droplets have many applications in different fields such as photonics, chemistry, biology... For most of these applications, it is important to control the size and the shape of these droplets or bubbles, since they directly influence the response of the system. Our goal is to generate mono disperse and controllable droplets to produce tunable structures. We also analyze their formation mechanisms and study the parameters that affect their size and their shape. In the present work, we use T-junction geometry to generate droplets of uniform size. In this configuration, there are three known regimes of droplet generation: dripping, squeezing and jetting regimes. We are particularly interested in the study of the dripping regime since it ensures the generation of droplets of smaller size compared to the other regimes. The experimental and the theoretical studies have shown that the droplets diameter decreases when the channels width decreases, when the continuous phase velocity increases and when the dispersed phase velocity decreases. In addition, we have shown evidence of a new regime of droplet generation in which the droplet diameter is constant, independent of the continuous and dispersed phases velocities and only related to the geometry of the T-junction channels. We named this new regime the balloon regime. We finally demonstrated the usefulness of the tunability of microfluidic systems in optics and acoustics. Actually, we show that the diffraction grating period can be easily changed by controlling the parameters of bubble generation. We show also that the acoustic response is related to the bubbles resonance in the liquid medium. This response is a function of the bubbles diameter. Finally, we propose the use of the microfluidic system in electronics, for realizing varying capacitors, where the diphasic microfluidic opens the way to new functionalities

Page generated in 0.3964 seconds