• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 36
  • 24
  • 17
  • 16
  • 15
  • 14
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Diversity within the genus Thermoanaerobacter and its potential implications in lignocellulosic biofuel production through consolidated bioprocessing

Verbeke, Tobin James 18 December 2012 (has links)
A major obstacle to achieving commercially viable lignocellulosic biofuels through consolidated bioprocessing (CBP) is the lack of “industry-ready” microorganisms. Ideally, a CBP-relevant organism would achieve efficient and complete hydrolysis of lignocellulose, simultaneous utilization of the diverse hydrolysis products and high yields of the desired biofuel. To date, no single microbe has been identified that can perform all of these processes at industrially significant levels. As such, thermophilic decaying woodchip compost was investigated as a source of novel lignocellulolytic, biofuel producing bacteria. From a single sample, a collection of physiologically diverse strains were isolated, which displayed differences in substrate utilization and biofuel production capabilities. Molecular characterization of these isolates, and development of a genome relatedness prediction model based on the chaperonin-60 universal target sequence, identified these isolates as strains of Thermoanaerobacter thermohydrosulfuricus. Application of this model to other Thermoanaerobacter spp. further identified that these isolates belong to a divergent and lesser characterized lineage within the genus. Based on this, the CBP-potential of a single isolate, T. thermohydrosulfuricus WC1, was selected for further investigation through metabolic, genomic and proteomic analyses. Its ability to grow on polymeric xylan, potentially catalyzed by an endoxylanase found in only a few Thermoanaerobacter strains, distinguishes T. thermohydrosulfuricus WC1 from many other strains within the genus. The simultaneous consumption of two important lignocellulose constituent saccharides, cellobiose and xylose was also observed and represents a desirable phenotype in CBP-relevant organisms. However, at elevated sugar concentrations, T. thermohydrosulfuricus WC1 produces principally lactate, rather than the desired biofuel ethanol, as the major end-product. Proteomic analysis identified that all likely end-product forming proteins were expressed at high levels suggesting that the end-product distribution patterns in T. thermohydrosulfuricus WC1 are likely controlled via metabolite-based regulation or are constrained by metabolic bottlenecks. The xylanolytic and simultaneous substrate utilization capabilities of T. thermohydrosulfuricus WC1 identify it as a strain of interest for CBP. However, for its development into an “industry-ready” strain as a co-culture with a cellulolytic microorganism, improved biofuel producing capabilities are needed. The practical implications of CBP-relevant phenotypes in T. thermohydrosulfuricus WC1 in relation to other Thermoanaerobacter spp. will be discussed.
22

Fisiologia e formação de partículas lipídicas durante o crescimento da levedura Yarrowia lipolytica IMUFRJ 50682. / Physiology and formation of lipid particles during growth of Yarrowia lipolytica IMUFRF 50682 yeast.

Fernanda Bacciotti 06 August 2015 (has links)
A levedura Yarrowia lipolytica tem sido muito investigada, especialmente por ser um microrganismo oleaginoso, ou seja, capaz de acumular grandes quantidades de lipídios, o que ocorre majoritariamente em organelas denominadas partículas lipídicas. Estes lipídios apresentam várias potenciais aplicações biotecnológicas, como por exemplo na produção de óleo microbiano (single cell oil) e na produção de biodiesel. Durante este projeto de mestrado, objetivou-se estudar a fisiologia de duas linhagens da levedura Y. lipolytica, sendo uma tradicionalmente estudada pela comunidade científica internacional (linhagem w29) e outra isolada da Baía da Guanabara, no Rio de Janeiro (linhagem IMUFRJ 50682). Foram realizados cultivos em frascos agitados tipo Erlenmeyer com defletores tampados com algodão (volume total 500 mL, volume de meio 100 mL, 28 oC e 200 rotações por minuto), durante os quais foi possível: 1) escolher um meio de cultivo de composição totalmente definida, com tiamina como único fator de crescimento, adequado a estudos de fisiologia quantitativa com esta levedura; 2) verificar que Y. lipolytica não é capaz de crescer com sacarose ou xilose como única fonte de carbono; 3) verificar que Y. lipolytica cresce com velocidade específica de crescimento máxima (Máx) de 0,49 h-1 num meio complexo contendo glicose, extrato de levedura e peptona (meio YPD), 0,31 h-1 em meio definido com glicose como única fonte de carbono e 0,35 h-1 no mesmo meio, mas com glicerol como única fonte de carbono, sem excreção de metabólitos para o meio de cultivo; 4) verificar que ocorreu limitação por oxigênio nos cultivos em frasco agitado, sendo este o motivo pelo qual as células deixaram de crescer exponencialmente; 5) verificar que o uso de ureia, em vez de sulfato de amônio, como fonte de nitrogênio, contribui para uma variação menor do pH durante os cultivos, sem prejuízo ao crescimento da levedura; 6) observar que, ao se restringir a oferta de nitrogênio à levedura (aumento da relação C/N inicial no meio de 12,6 para 126), as células têm sua morfologia alterada e apresentam maior quantidade de partículas lipídicas; 7) determinar uma composição elementar para a biomassa de Y. lipolytica (CH1,98O0,58N0,13), em que os átomos de carbono encontram-se em média mais reduzidos do que na biomassa de leveduras como Saccharomyces cerevisiae e Dekkera bruxellensis. Foram também realizados cultivos em biorreator em batelada (1 L de volume útil, 28 oC, aerobiose plena e pH controlado em 5,0), durante os quais foi possível: a) estabelecer um protocolo de cultivo para Y. lipolytica em biorreator (que envolvem agitação mecânica, aeração e uso de anti-espumante, entre outras diferenças em relação aos cultivos em frasco); b) confirmar os valores dos principais parâmetros fisiológicos apresentados por esta levedura, anteriormente obtidos a partir de cultivos em frasco; c) confirmar que o fator de conversão de substrato a células (Yx/s) é maior para cultivos realizados com glicerol como fonte única de carbono (0,53 g/g para a linhagem IMUFRJ 50682), do que com glicose (0,48 g/g para a mesma linhagem). Finalmente, cultivos realizados em quimiostato com glicerol como fonte de carbono e energia, limitados por amônio (fonte de nitrogênio, relação C/N 126), às vazões específicas de 0,25 h-1 e 0,15 h-1, permitiram observar que o número de partículas lipídicas por célula de Y. lipolytica permaneceu em torno de 2 em ambas as situações e houve uma diminuição no teor de nitrogênio nas células quando a velocidade específica de crescimento diminuiu de 0,25 para 0,15 h-1. / The yeast Yarrowia lipolytica has been intensively investigated, especially for being an oleaginous microorganism, thus possessing the capacity of accumulating high amounts of lipids, which mainly takes place in organeles known as lipid bodies. These lipids present several potential biotechnological appications, as in the production of single cell oil or biodiesel. During this research project, we aimed at investigating the physiology of two Y. lipolytica strains: w29, traditionally investigated by the international scientific community, and IMUFRJ 50682, isolated from the Guanabara Bay in Rio de Janeiro. Shake-flask cultivations in baffled Erlenmeyer flasks (total volume 500 mL, liquid volume 100 mL, 28 oC and 200 rotations per minute) with cotton stoppers were carried out and allowed us to: 1) choose a fully defined cultivation medium, in which tiamine is the sole growth factor, suitable for quantitative physiological studies with this yeast; 2) verify that Y. lipolytica is not capable of growing on sucrose or xylose as the sole carbon source; 3) observe that Y. lipolytica grows with a maximum specific growth rate (MAX) of 0.49 h-1 in a complex medium containing glucose, yeast extract and peptone (YPD medium), 0.31 h-1 in a defined medium with glucose as the sole carbon source, and 0.35 h-1 in the same medium, but with glycerol as the sole C-source, without excreting metabolites to the cultivation medium; 4) verify that oxygen limitation took place during our shakeflask cultivations and that this caused cells to leave the exponential growth phase; 5) verify that urea can substitute ammonium as the sole nitrogen-source for Y. lipolytica, keeping pH variations less pronounced, without compromising cell growth; 6) observe that cells presented an altered morphology and higher amounts of lipid bodies, when less nitrogen was added to the medium (C/N ratio increased from 12.6 to 126); 7) determine an elemental composition for the biomass of Y. lipolytica (CH1,98O0,58N0,13), in which the average carbon atom was more reduced with respect to the biomass of yeasts such as Dekkera bruxellensis and Saccharomyces cerevisiae. Bioreactor cultivations in batch mode (working volume 1 L, 28 oC, full aerobiosis and pH controlled at 5.0) were also carried out, which allowed us to: a) define a protocol for the cultivation of Y. lipolytica in this system (which involves mechanical agitation, aeration and the use of anti-foam, among other differences with respect to shake-flask cultivations); b) confirm the main physiological parameters presented by this yeast, previously obtained from shake-flask cultivations; c) confirm that the biomass yield on substrate (Yx/s) is higher on glycerol than on glucose (0.53 g/g and 0.48 g/g, respectively). Finally, N-limited chemostat cultivations with glycerol as the carbon and energy source and ammonium as the N-source were also performed (dilution rates of 0.25 h-1 and 0.15 h-1, C/N ratio in the medium of 126), allowing us to verify that the number of lipid particles per cell is around 2 under both conditions and that there was a decrease in the N content in the cells when the specific growth rate decreased from 0.25 to 0.15 h-1.
23

Identification of Essential Metabolic and Genetic Adaptations to the Quiescent State in Mycobacterium Tuberculosis: A Dissertation

Rittershaus, Emily S. C. 01 December 2016 (has links)
Mycobacterium tuberculosis stably adapts to respiratory limited environments by entering into a nongrowing but metabolically active state termed quiescence. This state is inherently tolerant to antibiotics due to a reduction in growth and activity of associated biosynthetic pathways. Understanding the physiology of the quiescent state, therefore, may be useful in developing new strategies to improve drug efficiency. Here, we used an established in vitro model of respiratory stress, hypoxia, to induce quiescence. We utilized metabolomic and genetic approaches to identify essential and active pathways associated with nongrowth. Our metabolomic profile of hypoxic M. tuberculosis revealed an increase in several free fatty acids, metabolite intermediates in the oxidative pathway of the tricarboxylic acid (TCA) cycle, as well as, the important chemical messenger, cAMP. In tandem, a high-throughput transposon mutant library screen (TnSeq) revealed that a cAMP-regulated protein acetyltransferase, MtPat, was conditionally essential for survival in the hypoxic state. Via 13C-carbon flux tracing we show an MtPat mutant is deficient in re-routing hypoxic metabolism away from the oxidative TCA cycle and that MtPat is involved in inhibiting fatty-acid catabolism in hypoxia. Additionally, we show that reductive TCA metabolism is required for survival of hypoxia by depletion of an essential TCA enzyme, malate dehydrogenase (Mdh) both in in vitro hypoxia and in vivo mouse infection. Inhibition of Mdh with a novel compound resulted in a significantly greater killing efficiency than the first-line anti-M. tuberculosis drug isoniazid (INH). In conclusion, we show that understanding the physiology of the quiescent state can lead to new drug targets for M. tuberculosis.
24

Development and Characterization of Eukaryotic Biomimetic Liposomes

Taylor, Bradley Jay 01 May 2004 (has links)
This study developed and characterized phospholipid vesicles, or liposomes, that mimic cell surfaces. Microemulsified liposomes contained biotinylated phosphatidylethanolamine, allowing them to be immobilized to avidin-coated glass. Laminin (LN), glycosphingolipids (GMl and GM3), and Escherichia coli's mechanosensitive channel of large conductance (EcoMscL) were embedded into liposome membranes. It was determined whether these embedded molecules exhibited their physiological roles of adhesion, cell recognition, and mechanosensation, respectively. Confocal laser scanning microscopy (CLSM) was employed to examine the interaction of fluorescently probed proteins, toxins, and bacteria with the immobilized microemulsified liposomes. Capture of individual and simultaneous multiple species of bacteria by GMl, GM3, or LN liposomes was quantified using ELISA and PCR. Surface-bound liposomes were unilamellar and immovable, allowing removal of unincorporated probes and biomolecules. Liposomes remained intact and stable against leakage of encapsulated sulforhodamine B for several months after immobilization. Functional reconstitution of EcoMscL was examined using CLSM during modulations in the immursing solution. Cholera toxin(Β subunit) (CTB), bovine lactoferrin (BLF), and E. coli O157:H7 were co-localized proximate to the surface of GMl liposomes. ELISAs determined E. coli O157:H7 and Salmonella enteritidis were captured on GMl liposomes containing GMI at 8.9 molar percent of total lipid. Listeria monocytogenes and Listeria innocua were not captured on the same liposomes. PCR identified the capture of specific bacterial species from individual species and mixtures of several species on liposomes. Simultaneous assays with mixtures of multiple species showed that the receptor-associated binding of bacteria, described with PCR assays of an individual species, were independent of competitive microorganisms. L. monocytogenes and L. innocua were more frequently bound to LN liposomes than other liposomes, indicating LN promotes adhesion of both the pathogenic and a nonpathogenic strain of Listeria. E. coli O157:H7 was more frequently captured on GMI liposomes than other liposomes, indicating a specificity for this bacteria. S. enteritidis bound to all liposomes, indicating a non-specific interaction. Known eukaryotic biomolecules implicated in cell recognition, adhesion, and mechanosensation were embedded in a system of artificial bilayers immobilized on a solid support. Liposomes constitute a biomimetic capable of specifically interacting and capturing proteins, toxins, and bacteria in solution.
25

The role of bacterial microcompartments in the fermentation of D-arabinose in Clostridium phytofermentans

Strough, Megan A 01 January 2013 (has links) (PDF)
Bacterial microcompartments, or BMCs, are 80-200nm, enzyme-encompassing organelles composed of interlocking proteins that form cyclical hexamers with a small central pore. Clostridium phytofermentans or Cphy, is a Gram-positive, rod shaped, anaerobic soil microbe that has the ability to not only break down multiple polysaccharides simultaneously but also proceeds to ferment them into biofuels. The genome of Cphy contains 3 BMC loci. During growth on fucose and rhamnose, one of these loci is highly expressed and microcompartments can be viewed using TEM. Under these growth conditions, three products, ethanol, propanol and propionate, which could potentially be highly useful in the biofuel and bioproducts industries, are produced. Gene expression microarrays have revealed that the genes for the fucose/rhamnose-related microcompartment are also highly expressed on D-arabinose. The role of BMCs during growth on D-arabinose has not been reported in any organism. My goal is to determine the role of BMCs in D-arabinose metabolism in C. phytofermentans.
26

Requirement of ßDELSEED-Motif of <em>Escherichia coli</em> F<sub>1</sub>F<sub>O</sub> ATP Synthase in Antimicrobial Peptide Binding.

Tayou, Junior Kom 01 May 2011 (has links) (PDF)
F1FO ATP synthase is a membrane bound enzyme capable of synthesizing and hydrolyzing ATP. Lately, α-helical cationic peptides such as melittin and melittin related peptide (MRP) were shown to inhibit E. coli ATP synthase. The proposed but unconfirmed site of inhibition is βDELSEED-motif formed by the residues 380-386, located at the interface of α/β subunit of ATP synthase. This project was a mutagenic analysis of βDELSEED-motif residues to understand the binding mechanism and mode of action of peptide inhibitors. The study addressed 2 main questions: Are the antibacterial/anticancer effects of these peptides related to their inhibitory action on ATP synthase through interaction with the βDELSEED-motif? If so, which amino acid residues play critical role in peptide binding? The findings demonstrated that the βDELSEED-motif is the binding site of the above peptides on ATP synthase and Glutamate residues are more important in peptide binding than the Aspartate residues.
27

Inhibition of <em>Escherichia coli</em> ATP Synthase Using Bioflavonoids.

Chinnam, Naga babu 01 May 2011 (has links) (PDF)
ATP synthase is the fundamental means of the cellular energy production in all organisms. Malfunction of ATP synthase is associated with multiple disease conditions. This enzyme is not only implicated in disease conditions but also likely to contribute in new therapies for multiple diseases by being a molecular target for several inhibitors. Bioflavonoids are a class of plant secondary metabolites known to exhibit antioxidants, chemopreventive, and chemotherapeutic properties. Their actual mode of action is not clear; however, some bioflavonoid are known to block the action of enzymes and other substances that promote the growth of cancer cells by binding to the multiple molecular targets in the body including ATP synthase. The most common dietary polyphenol resveratrol was shown to induce apoptosis via mitochondrial pathways and has chemopreventive properties against prostate cancer. Here we report the general inhibitory effects of dietary bioflavonoids on ATP synthase enzyme and intact E. coli cells.
28

The Effects of Quorum Sensing and Temperature on the Soluble Proteome of Vibrio salmonicida

Massey, Christopher L 01 June 2016 (has links) (PDF)
Vibrio salmonicida causes cold-water vibriosis in salmon populations around the world and causes financial damage to fisheries designed to farm these salmon. Very little is known about the physiology of how V. salmonicida causes disease and measures to contain vibriosis are restricted to either vaccinating individual fish against disease or administering antibiotics when an outbreak is detected. These procedures are costly and increase the risk for selection of antibiotic-resistant V. salmonicida strains. A recent reoccurrence of outbreaks in Norwegian fisheries provided incentive to better understand the virulence mechanisms of V. salmonicida. In this thesis, a proteomic approach was used to identify proteins that were differentially expressed when cells were grown in vitro under simulated virulence conditions (i.e. 5˚C and in the presence of exogenously supplied autoinducer 3-oxo-hexanoyl-homoserine lactone). Some examples of proteins with significantly altered expression that stood out at as homologs of potential virulence factors were: an exported serine protease DegQ, a multi-drug transporter HlyD, and an outer membrane protein OmpU. The proteomic approach allowed us to identify large numbers of proteins that are expressed by V. salmonicida, facilitating hypothesis-driven research in order to support possible roles for some of these proteins in virulence
29

Dietary Oligosaccharides Modulate Bifidobacterial Production of the Neurotransmitter Gamma-Aminobutyric Acid

Rozycki, Michelle 01 September 2020 (has links) (PDF)
Bifidobacteria are the predominant members of the infant gut, colonize adults to a lesser extent, and are recognized as beneficial microbes. Various bifidobacterial species produce ��-aminobutryic acid (GABA), the chief inhibitory neurotransmitter in the mammalian central nervous system. It is postulated that in order to produce GABA, the bifidobacterial genome must contain the gadB and gadC genes which encode a glutamate decarboxylase and a glutamate/GABA antiporter, respectively. Once exported by GadC, GABA is absorbed and transported systemically throughout the host. We hypothesize that specific dietary oligosaccharides will modulate bifidobacterial production of GABA due to varying intracellular concentrations of glutamate. To test this, 33 bifidobacterial strains were screened for GABA production via reverse phase HPLC. Interestingly, 10 strains contained both gadB and gadC genes, but only 8 strains produced detectable GABA in vitro. To further elucidate the extrinsic factors influencing GABA production, strains were subjected to different dietary components. Specifically, lactose and the dietary oligosaccharide FOS were evaluated for the ability to promote biosynthesis of intracellular glutamate and thus potentially GABA. Understanding the relationship between diet, bifidobacterial physiology, and GABA production may inform dietary interventions to modulate this neurotransmitter in vivo.
30

UNVEILING NOVEL ASPECTS OF D-AMINO ACID METABOLISM IN THE MODEL BACTERIUM PSEUDOMONAS PUTIDA KT2440

Radkov, Atanas D. 01 January 2015 (has links)
D-amino acids (D-AAs) are the α-carbon enantiomers of L-amino acids (L- AAs), the building blocks of proteins in known organisms. It was largely believed that D-AAs are unnatural and must be toxic to most organisms, as they would compete with the L-counterparts for protein synthesis. Recently, new methods have been developed that allow scientists to chromatographically separate the two AA stereoisomers. Since that time, it has been discovered that D-AAs are vital molecules and they have been detected in many organisms. The work of this dissertation focuses on their place in bacterial metabolism. This specific area was selected due to the abundance of D-AAs in bacteria-rich environments and the knowledge of their part in several processes, such as peptidoglycan synthesis, biofilm disassembly, and sporulation. We focused on the bacterium Pseudomonas putida KT2440 which inhabits the densely populated plant rhizosphere. Due to its versatility and cosmopolitan character, this bacterium has provided an excellent system to study D-AA metabolism. In the first chapter, we have developed a new approach to identify specific genes encoding enzymes acting on D-AAs, collectively known as amino acid racemases. Using this novel method, we identified three amino acid racemases encoded by the genome of P. putida KT2440. All of the enzymes were subsequently cloned and purified to homogeneity, followed by a complete biochemical characterization. The aim of the second chapter was to understand the specific role of the peculiar broad-spectrum amino acid racemase Alr identified in chapter one. After constructing a markerless deletion of the cognate gene, we conducted a variety of phenotypic assays that led to a model for a novel catabolic pathway that involves D-ornithine as an intermediate. The work in chapter three identifies for the first time numerous rhizosphere-dwelling bacteria capable of catabolizing D-AAs. Overall, the work in this dissertation contributes a novel understanding of D-AA catabolism in bacteria and aims to stimulate future efforts in this research area.

Page generated in 0.0859 seconds