• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Borate Based Glasses, Transparent Glass-Microcrystal Composites And Their Physical Properties

Vaish, Rahul 12 1900 (has links) (PDF)
Transparent glasses embedded with ferroelectric/nonlinear optic crystallites have been in increasing demand as these exhibit promising physical properties. These could be fabricated in large sizes and shapes with high optical homogeneity accompanied by high degree of transparency over a wide range of wavelengths of light. Amongst a variety of glasses that are known, borate-based glasses are of particular interest owing to their greater transparency, good chemical and mechanical stability, low materials cost, and useful electrical and dielectric properties. Keeping the potential multifarious applications of transparent glass-microcrystal composites in view, BaO-0.5Na2O-4.5B2O3, BaO-0.5Li2O-4.5B2O3, SrO-0.5Li2O-4.5B2O3, 3BaO-3TiO2-B2O3 and Li2O-3B2O3 glasses and glass-microcrystal composites were fabricated. These glasses on controlled heat treatment at appropriate temperatures yielded BaNaB9O15, BaLiB9O15, SrLiB9O15, Ba3Ti3B2O12 and LiB3O5 crystalline phases, respectively. Further transparent surface crystallized BaO-0.5Na2O-4.5B2O3 glasses were fabricated using ultrasonic treatment and their thermal properties have been investigated in detail using differential scanning calorimetry. It is observed that these glasses were homogeneously crystallizing on the surfaces after Ultrasonic treatment which can be exploited for planner wave-guide applications. Glass forming ability, thermal stability, glass-transition behavior, crystallization kinetics and viscosity of these glasses were studied extensively using various methods and rationalized by invoking various models. The above glasses have been characterized for their dielectric and electrical relaxation properties (as these properties are related to their electro-optic and non-linear optical properties) over 30- 600oC temperature range and frequencies (100 Hz -10 MHz) that are normally of interest in the applications of these materials. Several interesting features such as high ionic conductivity, marginally low dielectric loss and high dielectric constant behavior along with low thermal coefficient of dielectric constant were observed in these glasses and were rationalized using various models. The combination of these dielectric characteristics suggests that these are potential candidates for electrical energy storage device applications.
2

Transparent Glass Nono/Microcrystal Composites In MO-Bi2O3-B2O3(M= Sr, Ca) System And Their Physical Properties

Majhi, Koushik 09 1900 (has links)
Transparent glass-ceramics have been of industrial interest because of their multifarious applications. These are becoming increasingly important because of the flexibility that is associated with this route of fabricating intricate sizes and shapes as per the requirement. A number of glass-ceramics, based on well known ferroelectric crystalline phases (LiNbO3, LaBGeO5, SrBi2Nb2O9, Bi2WO6 etc.) were fabricated and their polar and electro-optic properties were reported. Keeping the potential applications of transparent glass-nano/microcrystal composites in view, attempts were made to fabricate SrBi2B2O7 and CaBi2B2O7 glasses and glass-nano/microcrystal composites. An attempt has been made to employ strontium bismuth borate SrBi2B2O7 (SBBO) as a reactive host glass matrix for growing the nanocrystals of ferroelectric oxides belonging to the Aurivillius family. The in situ nucleation and growth of SrBi2Nb2O9 (SBN) nanocrystals in a reactive SrBi2B2O7-Nb2O5 system and its influence on various physical (dielectric, pyroelectric and optical) properties were investigated. The strategy has been to visualize the formation of nanocrystalline SrBi2Nb2O9 as a result of the simple chemical reaction between glassy SrBi2B2O7 and Nb2O5. Indeed at lower concentrations of Nb2O5 transparent glasses were obtained which upon heat-treatment at appropriate temperatures yielded nanocrystalline SrBi2Nb2O9 phase in a transparent glass matrix. Textured SrBi2Nb2O9 ceramics were obtained by quenching the melts of SrBi2B2O7-Nb2O5 in equimolar ratio and their physical properties were studied. A strong anisotropy in physical properties (which are akin to single crystals) were demonstrated in the textured ceramics.
3

Multifunctionalities Of Telllurite And Borate Based Glasses Comprising Nano/Micro Crystals Of Tetragonal Tungsten Bronze-Type Ferroelectric Oxides

Ahamad, M Niyaz 10 1900 (has links)
Transparent glasses embedded with TTB structured ferroelectric nano/micro crystals (K3Li2Nb5O15, Ba5Li2Ti2Nb8O30) were fabricated in various tellurite and borate based glass matrices and characterized for their physical properties. Nanocrystals of K3Li2Nb5O15 were successfully grown inside tellurite glass matrix via conventional heat-treatment route. Eventhough, tellurite glasses preferentially crystallize only on the surface, bulk uniform crystallization was achieved in the (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) system. Heat capacity studies revealed them to be thermodynamically less fragile than any other tellurite glasses ever reported in the literature. Pyroelectric and ferroelectric effects as well as second harmonic generation were demonstrated for the heat treated (glass nanocrystal composites) samples in this system. The conventional method of melt-quenching of constituent oxides could not yield Ba5Li2Ti2Nb8O30 crystallites. So, Ba5Li2Ti2Nb8O30 microcrystals were successfully formed in tellurite glass matrix by mixing pre-reacted Ba5Li2Ti2Nb8O30 ceramic powders with TeO2. The glass transition temperature was found to be the highest ever reported and this system was kinetically strong based on the fragility parameter. Dielectric studies revealed a frequency and temperature independent nature of the dielectric constant and very low dielectric loss. The SHG measurement which was carried out as a function of temperature demonstrated the incidence of blue second harmonic generation in the microcrystals present in the glass matrix. Ba5Li2Ti2Nb8O30 nanocrystals were successfully crystallized in the transparent glass system (100-x)Li2B4O7 – x(Ba5Li2Ti2Nb8O30). Dielectric constant increased while the dielectric loss decreased with the increase in Ba5Li2Ti2Nb8O30 content. Nuclear magnetic resonance spectroscopic studies were carried out to have an insight into the structure of this system. Transmission studies and refractive index measurements were performed and various optical parameters were calculated. Dielectric and transport properties were studied for the glasses and glass nano/microcrystal composites of all the systems reported in this thesis. Li+ ion was found to be responsible for conduction in all these systems. Evolution of self-organized nanopatterns of K3Li2Nb5O15 crystals has been demonstrated in the glass system (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) by excimer laser irradiation. The second harmonic signal observed by the Maker fringe technique has been attributed to the presence of well-aligned nano-sized grating structures in the glass system. Glasses belonging to the systems TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30 and V2Te2O9 undergo spinodal decomposition on exposing to KrF pulsed excimer laser. The spinodally phase separated structures were observed on all the surfaces of the samples. Ring shaped patterns were observed on several locations of the samples at higher frequency of laser pulses probably owing to the shock waves produced by the high intense laser beam. Line shaped patterns were found to originate on the sample surfaces when irradiated for longer periods.

Page generated in 0.0883 seconds