• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty Analysis : Severe Accident Scenario at a Nordic Nuclear Power Plant

Hedly, Josefin, De Young, Mikaela January 2023 (has links)
Nuclear Power Plants (NPP) undergo fault and sensitivity analysis with scenario modelling to predict catastrophic events, specifically releases of Cesium 137 (Cs-137). The purpose of this thesis is to find which of 108 input-features from Modular Accident Analysis Program (MAAP)simulation code are important, when there is large release of Cs-137 emissions. The features are tested all together and in their groupings. To find important features, the Machine learning (ML) model Random Forest (RF) has a built-in attribute which identifies important features. The results of RF model classification are corroborated with Support Vector Machines (SVM), K-Nearest Neighbor (KNN) and use k-folds cross validation to improve and validate the results, resulting in a near 90% accuracy for the three ML models. RF is successful at identifying important features related to Cs-137 emissions, by using the classification model to first identify top features, to further train the models at identifying important input-features. The discovered input-features are important both within their individual groups, but also when including all features simultaneously. The large number of features included did not disrupt RF much, but the skewed dataset with few classified extreme events caused the accuracy to be lower at near 90%.
2

A Microdata Analysis Approach to Transport Infrastructure Maintenance

Svenson, Kristin January 2017 (has links)
Maintenance of transport infrastructure assets is widely advocated as the key in minimizing current and future costs of the transportation network. While effective maintenance decisions are often a result of engineering skills and practical knowledge, efficient decisions must also account for the net result over an asset's life-cycle. One essential aspect in the long term perspective of transport infrastructure maintenance is to proactively estimate maintenance needs. In dealing with immediate maintenance actions, support tools that can prioritize potential maintenance candidates are important to obtain an efficient maintenance strategy. This dissertation consists of five individual research papers presenting a microdata analysis approach to transport infrastructure maintenance. Microdata analysis is a multidisciplinary field in which large quantities of data is collected, analyzed, and interpreted to improve decision-making. Increased access to transport infrastructure data enables a deeper understanding of causal effects and a possibility to make predictions of future outcomes. The microdata analysis approach covers the complete process from data collection to actual decisions and is therefore well suited for the task of improving efficiency in transport infrastructure maintenance. Statistical modeling was the selected analysis method in this dissertation and provided solutions to the different problems presented in each of the five papers. In Paper I, a time-to-event model was used to estimate remaining road pavement lifetimes in Sweden. In Paper II, an extension of the model in Paper I assessed the impact of latent variables on road lifetimes; displaying the sections in a road network that are weaker due to e.g. subsoil conditions or undetected heavy traffic. The study in Paper III incorporated a probabilistic parametric distribution as a representation of road lifetimes into an equation for the marginal cost of road wear. Differentiated road wear marginal costs for heavy and light vehicles are an important information basis for decisions regarding vehicle miles traveled (VMT) taxation policies. In Paper IV, a distribution based clustering method was used to distinguish between road segments that are deteriorating and road segments that have a stationary road condition. Within railway networks, temporary speed restrictions are often imposed because of maintenance and must be addressed in order to keep punctuality. The study in Paper V evaluated the empirical effect on running time of speed restrictions on a Norwegian railway line using a generalized linear mixed model.

Page generated in 0.0663 seconds