• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 55
  • 23
  • 18
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 512
  • 512
  • 127
  • 78
  • 50
  • 48
  • 40
  • 40
  • 40
  • 34
  • 31
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Metrology of High Aspect Ratio MEMS

Nichols, James Franklin 09 April 2004 (has links)
The current tools for geometric analysis of micro-electromechanical systems (MEMS) are primarily limited to those of the semiconductor industry. These tools are suited for measuring entities that are two-dimensional in nature such as lines, circles, and planes. Hardware that is capable of collecting three-dimensional data is typically limited by the slope variations in the surfaces of the part, and cannot accurately capture information from steep sidewalls, particularly in parts fabricated using the LIGA micro-fabrication process. This research develops a methodology to qualify MEMS, by implementing a novel computer-aided inspection (CAI) software framework. This software platform uses data acquired from current MEMS inspection hardware, and applies newly developed analysis algorithms to geometrically characterize a part. This work implements algorithms for all the procedures typical to a CAI program (e.g., point-to-entity assignment, registration, and data analysis) in addition to new techniques suited for inspection of high aspect ratio MEMS. This methodology describes possible registration errors based on the type of geometries being analyzed and the type of data acquired. Analyses of multiple point clouds with the use of fiducial information are shown to provide a critical link between single point cloud analyses that has heretofore been unrealized.
222

Exploitation of Nonlinear Behavior to Improve the Performance of a Magnetic Sensor

Reiman, Stephen E. 12 April 2004 (has links)
While nonlinear behavior in mechanical systems typically degrades the behavior and performance the devices, the presence of system nonlinearities can sometimes improve the quality of the system. A reason for avoiding nonlinearities within a device is the difficulty in controlling the device due to the effects of the nonlinearities on system behavior. However, careful analysis of nonlinear systems can allow for one to take advantage of the nonlinear behavior to improve system performance. The objective of this thesis is to exploit the use of nonlinearities to enhance system performance, specifically the sensitivity of a micromachined magnetic sensor. A device design will be presented that is similar to a prototype that has been fabricated by a student within the Electrical and Computer Engineering Department at Georgia Tech. The operating principle of the device is that changes in the orientation and the strength of an external magnetic field will result in changes in the dynamic behavior of the sensor. While previous device provided a proof of the design concept, it was unable to achieve a sensitivity that would allow for its use as a compass. Improvements in the sensitivity of the sensor are achieved through the modeling and optimization of the magnetic sensor. The optimization and redesign of the magnetic sensor will improve the quality of the device and provide another step towards sensor commercialization. A new design that incorporates the use of variable force comb drives will be proposed that will further improve the sensitivity of the device by modifying the dynamic behavior of the sensor. Another approach that is presented to exploit the nonlinear behavior of the magnetic sensor involves a frequency detection scheme that uses nonlinear vibrations to characterize sensor behavior. Some benefits of this detection technique are that it is insensitive to noise in the vibration of the sensor and is also independent of the damping present within the system. In addition, the implementation of this sensing technique can be readily applied to variety of sensors types without the redesign of a system or the addition of complex components such as vacuum packaging or signal processing electronics.
223

Carbon Nanotube Synthesis for Microsystems Applications

Sunden, Erik Oscar 23 June 2006 (has links)
Modern day engineering systems research presently lacks techniques to exploit the unique properties of many nanomaterials; coupled with this challenge exists the need to interface these nanomaterials with microscale and macroscale platforms. A nanomaterial of particular interest is the carbon nanotube (CNT), due to its enhanced physical properties. In addition to varied electrical properties, the CNT has demonstrated high thermal conductivity and tensile strength compared to conventional fiber materials. CNTs are beginning to see commercial applications in areas in which sufficient study has been dedicated. While a large part of the worldwide focus of CNT research has been in synthesis, an equally important area of research lies in CNT integration processes. The unique and useful properties of many nanostructured materials will never be realized in mainstream manufacturing processes and commercial applications without the proper exploration of integration methods such as those detailed in this thesis. The primary motivation for the research detailed in this thesis has been to develop CNT synthesis processing techniques that allow for novel interfacing methods between carbon nanotubes and eventual applications. In this study, an investigation was performed to look at several approaches to integrating CNTs into micro-electromechanical systems (MEMS). Synthesis of CNTs was studied in two different settings. Synthesis was first performed, directly on the microsystem, via a global scale chemical vapor deposition (CVD) process. Secondly, synthesis was performed directly onto a microsystem device via localized resistive heating. Following synthesis, the application of atomically layered, protective coatings was then investigated. Integration methods were then investigated to allow for CNT transfer to microsystem applications incapable of withstanding synthesis temperatures. The developed integration methods were evaluated by creating functional microscale electrical circuits in flexible substrates via hot emboss imprint lithography. Lastly, post synthesis processing methods were used to create micropatterned cell guidance substrates as well as neuronal stimulating substrates.
224

Packaging and Characterization of MEMS Optical Microphones

Garcia, Caesar Theodore 15 November 2007 (has links)
Miniature microphones have numerous applications but often exhibit poor performance which can be attributed to the challenges associated with capacitive detection at small size scales. Optical detection methods are able to overcome some of these challenges although miniaturized integration of these optical systems has not yet been demonstrated. An optical interferometric detection scheme is presented and is implemented using micro-scale optoelectronic devices which are used primarily in fiber optic data transmission. Using basic diffraction theory, a model is developed and used to optimize the micro-optical system within a 1mm3 volume. Both omnidirectional and directional optical microphone designs are presented and a modular packaging architecture is assembled in order to test these devices. Results from the 2mm diameter omnidirectional optical microphone structure demonstrate a 26dBA noise floor. The biomimetic directional optical microphone, which has an equivalent port spacing of 1mm, demonstrates a noise floor of 34dBA. Additionally, these results demonstrate an array of two biomimetic directional optical microphones located on the same silicon chip and separated by less than 5mm. These results confirm the micro-optical detection method as an alternative to capacitive detection especially for miniaturized microphone applications and suggest that this method in its modular packaging architecture is competitive with industry leading measurement microphones.
225

Dielectric charging in capacitive RF MEMS switches with silicon nitride and silicon dioxide

Tavassolian, Negar 16 February 2011 (has links)
Capacitive radio frequency (RF) micro-electromechanical (MEMS) switches are among the most promising applications in MEMS systems. They have been introduced in the last 15-20 years as a practical alternative over traditional semiconductor switches. Low-cost RF MEMS switches are prime candidates for replacing the conventional GaAs Field Effect Transistors (FET) and pin diode switches in RF and microwave communication systems, mainly due to their low insertion loss, good isolation, linear characteristic and low power consumption. Unfortunately, their commercialization is currently hindered by reliability problems. The most important problem is charging of the dielectric, causing unpredictable device behavior. The charging of the dielectric has been found to be a complicated process and is currently under intense research. Developing a good analytical model that would describe accumulating of charges in the dielectric and their influence on the device behavior would be the main step to achieving more reliable switches. This work intends to theoretically and experimentally investigate the dielectric charging effects of capacitive RF MEMS switches with silicon nitride and silicon dioxide as the dielectric layer. For the silicon nitride study, both MEMS switches and MIM capacitors were fabricated, and their charging behaviors were analyzed and compared. Several different dielectric stoichiometries, deposition temperatures, and thicknesses were examined in order to understand the effects of each parameter on the charging mechanisms of the dielectric. The goal was to determine the most favorable deposition conditions to induce minimum dielectric charging in silicon nitride capacitive switches. The switches were measured over a wide temperature range and the temperaturedependent behavior of the dielectric was examined to characterize and study its charging behaviors. For the silicon dioxide MEMS switches, several different actuation mechanisms were systematically analyzed, and their effects on the dielectric charging of the switches were studied. A general model of distributed charge and air gap was adopted and further developed to better explain the charging behavior of MEMS switches. The goal was to provide a deeper insight into the trapping processes in dielectric materials and their corresponding time constants. This will in turn aid in better modeling of charging processes in capacitive RF MEMS switches.
226

Micromachined membrane-based active probes for biomolecular force spectroscopy

Torun, Hamdi 04 January 2010 (has links)
Atomic force microscope (AFM) is an invaluable tool for measurement of pico-Newton to nano-Newton levels of interaction forces in liquid. As such, it is widely used to measure single-molecular interaction forces through dynamic force spectroscopy. In this technique, the interaction force spectra between a specimen on the sharp tip of the cantilever and another specimen on the substrate is measured by repeatedly moving the cantilever in and out of contact with the substrate. By varying the loading rate and measuring the bond rupture force or bond lifetime give researchers information about the strength and dissociation rates of non-covalent bonds, which in turn determines the energy barriers to overcome. Commercially available cantilevers can resolve interaction forces as low as 5 pN with 1 kHz bandwidth in fluid. This resolution can be improved to 1 pN by using smaller cantilevers at the expense of microfabrication constraints and sophisticated detection systems. The pulling speed of the cantilever, which determines the loading rate of the bonds, is limited to the point where the hydrodynamic drag force becomes comparable to the level of the molecular interaction force. This level is around 10 um/s for most cantilevers while higher pulling speeds are required for complete understanding of force spectra. Thus, novel actuators that allow higher loading rates with minimal hydrodynamic drag forces on the cantilevers, and fast, sensitive force sensors with simple detection systems are highly desirable. This dissertation presents the research efforts for the development of membrane-based active probe structures with electrostatic actuation and integrated diffraction-based optical interferometric force detection for single-molecular force measurements. Design, microfabrication and characterization of the probes are explained in detail. A setup including optics and electronics for experimental characterization and biological experiments with the probes membranes is also presented. Finally, biological experiments are included in this dissertation. The "active" nature of the probe is because of the integrated, parallel-plate type electrostatic actuator. The actuation range of the membrane is controlled with the gap height between the membrane and the substrate. Within this range it is possible to actuate the membrane fast, with a speed limited by the membrane dynamics with negligible hydrodynamic drag. Actuating these membrane probes and using a cantilever coupled to the membrane, fast pulling experiments with an order of magnitude faster than achieved by regular AFM systems are demonstrated. The displacement noise spectral density for the probe was measured to be below 10 fm/rtHz for frequencies as low as 3 Hz with differential readout scheme. This noise floor provides a force sensitivity of 0.3 - 3 pN with 1 kHz bandwidth using membranes with spring constants of 1 - 10 N/m. This low inherent noise has a potential to probe wide range of biomolecules. The probes have been demonstrated for fast-pulling and high-resolution force sensing. Feasibility for high throughput parallel operation has been explored. Unique capabilities of the probes such as electrostatic spring constant tuning and thermal drift cancellation in AFM are also presented in this dissertation.
227

Materials, design and processing of air encapsulated MEMS packaging

Fritz, Nathan Tyler 16 December 2011 (has links)
Air-gap structures are of particular interest for packaging of microelectromechanical systems (MEMS). In this work, an overcoat material is used to cover a sacrificial polymer, which protects the MEMS device during packaging. Once the overcoat is in place, the sacrificial polymer is thermally decomposed freeing the MEMS structure while the overcoat dielectric provides mechanical protection from the environment. An epoxy POSS dielectric was used as a high-selectivity etch mask for the PPC and a rigid overcoat for the structure leading to the process improvements. The packaging structures can be designed for a range of MEMS device sizes and operating environments. However, the air-cavity structures need additional rigidity to withstand chip-level packaging conditions. Metalized air cavity packages were molded under traditional lead frame molding pressures and tested for mechanical integrity. The experimental molding tests and mechanical models were used to establish processing conditions and physical designs for the cavities as a function of cavity size. A semi-hermetic package was created using an in-situ sacrificial decomposition/epoxy cure molding step for creating large cavity chip packages. Through the optimization of the air cavity, new materials and processes were tested for general microfabrication. The epoxy POSS dielectric provides a resilient, strong inorganic/organic hybrid dielectric for use in microfabrication and packaging applications. Polycarbonates can be used for low cost temporary adhesives in wafer-wafer bonding. An improved electroless deposition process for silver and copper was developed. The Sn/Pd activation was replaced by a cost efficient Sn/Ag catalyst. The process was shown to be able to deposit adherent copper on smooth POSS and silicon dioxide surfaces. Electroless copper was demonstrated on untreated silicon oxide wafers for TSV sidewall deposition.
228

Signal processing techniques for nonlinearity identification of structures using transient response

Dinardo, Joseph E., Feng, Zaichun. January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 22, 2009). Thesis advisor: Dr. Frank Feng. Includes bibliographical references.
229

A selective encapsulation solution for packaging an optical micro electro mechanical system

Bowman, Amy Catherine. January 2002 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: packaging; micro electro mechanical systems; MEMS; electronics; die warpage; die bow; encapsulant; encapsulate; electrochemical migration; corrosion; wirebonds. Includes bibliographical references (p. 94-99).
230

Experimental study of fast electrons from the interaction of ultra intense laser and solid density plasmas

Cho, Byoung-ick, 1976- 07 September 2012 (has links)
A series of experiments have been performed to understand fast electron generation from ultra intense laser-solid interaction, and their transports through a cold material. Using Micro-Electro-Mechanical Systems (MEMS), we contrived various shape of cone and wedge targets. The first set of experiment was for investigating hot electron generations by measuring x-ray production in different energy ranges. K[alpha] and hard x-ray yields were compared when the laser was focused into pyramidal shaped cone targets and wedge shaped targets. Hot electron production is highest in the wedge targets irradiated with transverse polarization, though K[alpha] is maximized with wedge targets and parallel polarization. These results are explained with particle-in-cell (PIC) simulations utilizing PICLS and OOPIC codes. We also investigate hot electron transport in foil, wedge, and cone targets by observing the transition radiation emitted from the targets rear side along with bremsstrahlung x-ray measurement. Twodimensional images and spectra of 800 nm coherent transition radiation (CTR) along with ballistic electron transport analysis have revealed the spatial, temporal, and temperature characteristics of hot electron micro-pulses. Various patterns from different target-laser configurations suggest that hot electrons were guided by the strong static electromagnetic fields at the target boundary. Evidence about fast electron guiding in the cone is also observed. CTR at 400 nm showed that two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and j x B heating, create two populations of electrons at the targets front side and drive them to different directions, with distinct temperatures and temporal characteristics. This interpretation is consistent with the results from 3D-PIC code Virtual Laser Plasma Laboratory (VLPL). / text

Page generated in 0.0816 seconds